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1. MOTIVATION

We extend the Chernozhukov and Hong (2003) Laplace estimation procedure to Kim and Pollard

(1990)–type objective functions (e.g. the maximum score estimator (Manski, 1975). Scaling the non-

regular objective functions by a sample–size (n)–dependent input parameter α2
n, we establish that the

Laplace estimation procedure, given sufficient smoothness, can improve the 3
√

n–convergence rate of

Kim and Pollard (1990) to a rate arbitrarily close to
√

n. We further show that the proposed estimator

has three different types of limiting distribution, depending on the rate at which αn diverges. We

provide a simple–to–implement uniform inference method which yields (asymptotically) correct

inference irrespective of which of the three types applies. Generally, a slower rate of increase of αn

translates to a faster convergence rate for our estimator θ̂, albeit that the convergence rate of θ̂ is

never worse than 3
√

n and that to achieve faster than n2/5–convergence a bias–correction procedure

is needed. We provide two such procedures: the bias can be estimated and subtracted or one can use

a special ‘prior’ resembling Jeffreys’ (1946) prior. Computation is straightforward and can typically

be accomplished using Gibbs sampling (Geman and Geman, 1984). A limited simulation study

yields encouraging results.

Chernozhukov and Hong (2003) proposed integrating instead of optimizing the (exponential

of an) objective function of extremum estimators to obtain an estimator of an unknown parameter

vector θ0; they labelled their estimator a Laplace estimator. The objective in Chernozhukov and Hong

(2003) is primarily to facilitate the computation of some difficult–to–compute estimators by using

the Markov Chain Monte Carlo (MCMC) method. Under the assumption that the objective function

of interest admits a classical quadratic expansion, Chernozhukov and Hong (2003) showed that

their Laplace–type estimators are generally
√

n–consistent and have a limiting normal distribution.

One version of their estimator can be interpreted as the ‘posterior’ mean based on a ‘prior’ and a

‘pseudo–likelihood,’ where the latter is formed using the extremum estimator objective function

of interest.1 Chernozhukov and Hong (2003) derived conditions under which their estimator is

efficient and in which its limiting distribution coincides with the (pseudo) posterior distribution.

The results of Chernozhukov and Hong (2003) do not extend to the class of estimators considered

by Kim and Pollard (1990) because the Kim and Pollard objective functions do not admit the

quadratic expansion needed. Computation of this class of estimators and their confidence regions

1Despite the use of terminology which has a Bayesian ring to it, the Chernozhukov and Hong (2003) procedure — and indeed
ours — is entirely classical.
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can be cumbersome (see e.g. Manski and Thompson, 1986; Pinkse, 1993; Florios and Skouras, 2008),

so a Laplace–type procedure would be valuable.

The extension of the Laplace–procedure to Kim and Pollard (1990)–type objective functions is

not merely a generalization of the Chernozhukov and Hong (2003) conditions. Indeed, whereas

for the class of estimators admitting the standard quadratic expansion, the estimator is always
√

n–

consistent and the limiting distribution is always normal regardless of the scaling of the objective

function, in the case studied in this paper both the convergence rate of our estimator and the nature

of the limiting distribution depend on the input parameter α2
n that scales the objective function.

If αn diverges at a rate no slower than 3
√

n then our estimator θ̂ is 3
√

n–convergent. If αn diverges

faster than 3
√

n then θ̂ moreover has the same limiting distribution as the corresponding Kim and

Pollard (1990) extremum estimator even though our estimator is always a singleton and the Kim

and Pollard (1990) estimator can be set–valued as in e.g. the case of the maximum score estimator.

When αn increases at the rate of 3
√

n, the limiting distribution of θ̂ is characterized by the ratio of

two integrals of a certain Gaussian process. The third type of limiting distribution, namely the

normal, arises when αn increases at a rate slower than 3
√

n. Indeed, we show that subject to sufficient

smoothness the convergence rate of θ̂ can be as good as
√

n/αn; since αn must increase to infinity

with n, a convergence rate of
√

n is not achievable. If αn increases more slowly (i.e. no faster than
5
√

n) then asymptotic bias becomes an issue; the asymptotic bias is discussed further below.

This trichotomy of limiting distributions is interesting, but since in practice one only chooses a

value of αn, not a rate, deciding which limit distribution to use is problematic. So, we develop a

simple–to–execute simulation–based inference procedure which automatically adapts to the correct

limit distribution.2 So inference is uniform in the choice of αn; this result is at the heart of this paper.

Uniform inference procedures exist in numerous other environments, including weak identifi-

cation (Staiger and Stock, 1997), roots near unity (Mikusheva, 2007), subsampling (Andrews and

Guggenberger, 2008), kernel estimation (Guerre and Lavergne, 2005), HAC estimation (Kiefer and

Vogelsang, 2005), and average derivative estimation (Cattaneo, Crump, and Jansson, 2008). Whereas

in Staiger and Stock (1997) uniformity is achieved in a nuisance parameter and in Mikusheva (2007)

in the parameter of interest, here it is achieved in a sample–size–dependent input parameter αn.

In contrast to e.g. Guerre and Lavergne (2005), in our case uniformity is in the rate of the input

parameter instead of a constant multiplying the rate. Like Mikusheva (2007), but unlike e.g. Cattaneo,

2Directly using the quantiles of the pseudo–posterior to conduct inference does not appear to be feasible in our case, although
Chernozhukov and Hong (2003) derived conditions under which this can be done in their, regular, case.
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Crump, and Jansson (2008), our limiting distributions differ not just in parameter values, but also in

type, and here there are three distinct types instead of two as in Mikusheva (2007).

As we mentioned earlier, a slow rate of increase of αn (i.e. no faster than 5
√

n) introduces an

asymptotic bias issue. We provide two methods for removing the asymptotic bias, namely to

subtract an estimate of the bias and to use a special prior. Indeed, we show that using the equivalent

of Jeffreys’ (1946) prior in the current context, or an estimated version thereof, removes the n−2/5–

order bias. This is the only instance that we are aware of in which the choice of prior matters in large

samples when there is point–identification.3

For consistency, αn must increase to infinity with the sample size; for consistency the rate at which

αn increases is immaterial. If one were to let αn decrease to zero, however, then our estimator would

converge to the mean of the prior, which would also be true for the regular Chernozhukov and Hong

(2003) estimator. A consequence of this is that for small choices of αn, the estimator is biased towards

the mean of the prior and that this type of bias cannot be corrected using asymptotic methods.

A similar issue arises in kernel regression estimation if one lets the bandwidth go to infinity. We

investigate both types of bias in our simulation study.

We illustrate our methodology using the maximum score estimator (Manski, 1975, MSE) as a

leading example. We emphasize the binary choice version of the MSE, albeit that the discussion

applies equally to the ordered response and multinomial choice cases (Lee, 1992; Manski, 1975).

The MSE is 3
√

n–consistent for the vector of regression coefficients in a binary choice model using

little more than a conditional median restriction on the errors in the latent variable equation. In

particular, unlike other parametric estimators such as probit or logit, the error distribution need not

be specified. Unlike other semiparametric single–index models (e.g. Klein and Spady, 1993), the

error distribution need not be independent of the regressors, and heteroskedasticity of unknown

form is permitted. Despite this desirable generality, the MSE has not been especially popular because

of its computational difficulty, its slow convergence rate, and its nonstandard limiting distribution;

we are aware of only a few empirical uses of the MSE and its generalization, including Bajari, Fox,

and Ryan (2008); Bajari and Fox (2009); Fox (2007, 2009).

Horowitz (1992) has shown that by replacing the maximum score objective function with a

smoothed version thereof, a rate arbitrarily close to
√

n is attainable with a limiting normal distribu-

tion, subject to sufficient smoothness. Subsequently de Jong and Woutersen (2007) and Kotlyarova

and Zinde-Walsh (2009) have extended the Horowitz results. Kordas (2006) has extended the

3When the model is not fully identified, the choice of prior generally matters in large samples in Bayesian analysis (e.g. Moon
and Schorfheide, 2009).
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smoothed maximum score estimator (Horowitz, 1992, SMS) to allow for quantiles other than the

median and his procedure was implemented empirically by Belluzo (2004); using quantiles other

than the median is also possible with the original MSE and the estimator proposed in this paper. Al-

though the best attainable convergence rate of the SMS is the same as ours under similar conditions,

our estimator is entirely different from Horowitz’s, our estimator is not specific to the maximum

score case, due to the nonconcavity of the objective function the SMS estimator is more difficult to

compute than ours, and no uniform inference procedures are available for it.

One problem with the SMS is that the choice of bandwidth is determined by the unknown degree

of smoothness. If the degree of smoothness used to determine the bandwidth differs from the true

degree of smoothness then the convergence rate of the SMS is suboptimal. Indeed, Pollard (1993)

has shown that 3
√

n is the best rate that can be achieved if only the smoothness conditions for the

MSE are satisfied and that the SMS will then have a bias term which vanishes more slowly than
3
√

n. The same problem arises for our estimator and the choice of αn. Kotlyarova and Zinde-Walsh

(2006, KZ) proposed an estimation procedure which automatically adapts to the unknown degree

of smoothness. The advantage of our estimator over the SMS estimator, when both are combined

with a KZ–like procedure, is the uniformity of our inference method across input parameter–values

including the 3
√

n–convergence case. For example, with a KZ–like estimation method, our inference

procedure (with minor adaptations) could accommodate the possibility that only the smoothness

conditions for the MSE are satisfied. It is difficult to see how — absent a uniform inference procedure

— one could accomplish this for the SMS.

Horowitz (2002) established that the bootstrap (Efron and Tibshirani, 1997) offers an asymptotic

refinement for the SMS estimator. In order for such a refinement to obtain, the rate at which the

bandwidth tends to zero is different from the one resulting in the optimal convergence rate of the

estimator.4 We have made a preliminary investigation on the bootstrap in our context, but intend

to establish rigorous results for a procedure providing asymptotic refinements in the future. On

the basis of our preliminary work, we conclude that the bootstrap is inconsistent if αn increases

no slower than 3
√

n for much the same reasons that the bootstrap is inconsistent for the regular

maximum score estimator (Abrevaya and Huang, 2005).5 We further conclude that if αn increases

more slowly than 3
√

n, then the bootstrap will be consistent. Moreover, asymptotic refinements will

4This is typical for nonparametric estimators, but an unattractive consequence is that the ratio of the width of the ‘regular’
confidence interval to that of the bootstrap confidence interval decreases to zero as the sample size tends to infinity.
5Subsampling (Politis, Romano, and Wolf, 1999) has been shown to be consistent for a class of 3

√
n–consistent estimators by

Delgado, Rodrıguez-Poo, and Wolf (2001), but is less attractive than the bootstrap for reasons of efficiency.
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obtain provided that there is sufficient smoothness that is not exploited to optimize the convergence

rate of the estimator.

The bootstrap and the uniform inference procedure have different goals: with the bootstrap the

actual coverage probability of the confidence interval converges faster to the nominal one if αn

increases sufficiently slowly and there is ‘surplus’ smoothness; the uniform inference procedure

provides robustness to the choice of αn. These two goals are mutually exclusive in the current context

(and for KP estimators generally) since the bootstrap is inconsistent if αn increases no slower than
3
√

n. We focus on the uniform inference procedure here because, in view of the two discontinuities in

the limiting distribution as a function of the rate of increase of αn, we believe it is the more serious

of the two problems these procedures address.

As noted at the beginning of this section, for the maximum score case our estimator can be

computed using Gibbs sampling. It turns out that computation is fast, simple, and accurate. If one

chooses a prior for which a closed form solution exists for the integrated prior of each coefficient

conditional on the others then computation of our estimator involves nothing more complicated

than drawing uniform random numbers, sorting, and averaging. Likewise, irrespective of the type

of Kim and Pollard (1990) estimator, uniform inference requires little more than drawing random

numbers from a multivariate normal.

We study the properties of our estimator in a limited simulation study. The behavior of the

proposed estimator reflects what one would expect on the basis of the theory. First, there is a tradeoff

between bias and variance, with higher values of αn resulting in less bias, but more variance. Further,

the asymptotic bias can be corrected using Jeffreys’ prior but if αn is chosen very small then the

estimator is biased towards the mean of the prior. Finally, the uniform inference procedure moves

smoothly from the limiting distribution of the maximum score estimator to the normal with the

value of αn.

There are issues of potential interest that are not studied in this paper in addition to those, like

the bootstrap, that were discussed above. First, one could look at statistics other than the posterior

mean, as do Chernozhukov and Hong (2003). Further, using our methodology for the least median

of squares (LMS) estimator of Rousseeuw (1984) requires a nuisance parameter problem to be

addressed and its breakdown point to be determined; see Zinde-Walsh (2002) for an adaptation of

the SMS idea to the LMS case.

The paper is organized as follows. In section 2 we discuss our estimation method and derive

convergence results in section 3, which also includes a discussion of both of our bias correction
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methods. Our uniform inference procedure is described in section 4. Finally, the simulation study is

contained in section 5.

2. ESTIMATION METHOD

2.1. Set Up. Let Ln(θ) = n−1 ∑n
i=1 gi(θ) be the (renormed) objective function of a 3

√
n–consistent

estimator of an unknown parameter vector θ0 ∈ Θ ⊂ <d. The functions gi = g(ξi, ·) are defined

such that gi(θ0) = 0 a.s.. For the specific case of the maximum score estimator with regressor vector

xi = [ai, zᵀ
i ]ᵀ where the coefficient on ai is normalized to equal minus one we get for ξi = [yi, xᵀ

i ]ᵀ,

gi(θ) = (2yi − 1)
(

I(ai ≤ zᵀ
i θ)− I(ai ≤ zᵀ

i θ0)
)
, (1)

but the results below apply to general gi, provided that our assumptions are satisfied.

We consider Laplace–type estimators of the form

θ̂ =

∫
θπ(θ) exp

(
α2

nLn(θ)
)
dθ∫

π(θ) exp
(
α2

nLn(θ)
)
dθ

, (2)

where {αn} is some sequence for which αn → ∞ as n→ ∞;6 we will call π a prior, even though for

most of our results we do not require it to be nonnegative. If the prior is nonnegative everywhere,

then θ̂ can be interpreted as the mean of a posterior distribution; we will use the term ‘posterior’

regardless of whether the prior is nonnegative. If Ln were the objective function of a
√

n–consistent

estimator instead of the one considered here and αn =
√

n, we would have the Laplace estimator of

Chernozhukov and Hong (2003).

Provided that θ0 is a unique maximizer of Q(θ) = E[gi(θ)], consistency is straightforward to

establish; see e.g. Robert and Casella (2004), corollary 5.11. The purpose of this paper is to study the

effect of the choice of {αn} on the asymptotic properties of θ̂. If αn increases faster than 3
√

n then it

turns out that θ̂ is asymptotically equivalent to the estimator maximizing Ln, for which Kim and

Pollard (1990) derived limit results.7 Although we emphasize the case in which αn increases no

faster than 3
√

n, we provide results for αn that increase faster, also. In subsequent sections we show

that the best achievable convergence rate (given sufficient smoothness) is κn = max( 3
√

n,
√

n/αn),

albeit that to achieve a convergence rate better than n2/5 requires bias correction; this is in line with

the properties derived in Horowitz (1992) for the SMS estimator.

6In Chernozhukov and Hong (2003) αn =
√

n, but its choice does not affect the limiting distribution provided that αn diverges
to infinity.
7For the case in which Ln is the maximum score objective function, if αn increases faster than

√
n (not 3

√
n), θ̂ is for large n in

fact a prior–weighted average over the maximum score estimator, i.e. the (possibly noncontiguous) set of values maximizing
the maximum score objective function.
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2.2. Intuition for our results. We now provide some intuition for our results when αn increases no

faster than 3
√

n, but please note that our results also cover the case in which αn increases faster than

that. Let Sn(θ) = n−1 ∑n
i=1 g̃i(θ) with g̃i(θ) = gi(θ)−Q(θ). Then (2) can be rewritten as

θ̂ =

∫
θπ(θ) exp

(
α2

nSn(θ) + α2
nQ(θ)

)
dθ∫

π(θ) exp
(
α2

nSn(θ) + α2
nQ(θ)

)
dθ

. (3)

Let βn =
√

α3
n/n. By applying the substitution t = αn(θ − θ0) to (3) we obtain√

n
αn

(θ̂− θ0) =
1

βn

∫
tπn(t) exp

(
βnS̃n(t) + Qn(t)

)
dt∫

πn(t) exp
(

βnS̃n(t) + Qn(t)
)
dt

, (4)

where πn(t) = π(θ0 + t/αn), Qn(t) = α2
nQ(θ0 + t/αn) and S̃n(t) =

√
nαnSn(θ0 + t/αn).

For large n, Qn(t) ≈ −tᵀVt/2 for V = −Q′′(θ0) and πn(t) ≈ π0. Replacing Qn, πn in the right

hand side of (4) with their respective approximations yields

1
βn

∫
t exp

(
βnS̃n(t)− tᵀVt/2

)
dt∫

exp
(

βnS̃n(t)− tᵀVt/2
)
dt

=
1

βn

∫
t exp

(
βnS̃n(t)

)
φV(t)dt∫

exp
(

βnS̃n(t)
)
φV(t)dt

, (5)

where φV(t) is the multivariate mean zero, variance V−1, normal density function.

We establish in an appendix that S̃n
w→ G, where G is a tight Gaussian process defined on the

entire Euclidean space. So if αn = c2
α

3
√

n then (5) converges in distribution to

1
c3

α

∫
t exp

(
c3

αG(t)
)
φV(t)dt∫

exp
(
c3

αG(t)
)
φV(t)dt

,

which is indeed the result of theorem 3 below. If αn = o( 3
√

n) then βn = o(1) and the right hand side

in (5) is approximately ∫
tS̃n(t)φV(t)dt, 8

which has a limiting normal distribution since S̃n is a renormed sample average of a sequence

of i.i.d. mean zero variates. This is a result to be established in theorem 4, albeit that the result

of theorem 4 contains a bias term Bn. This bias term arises from the approximation of Qn(t) by

−tᵀVt/2. It is asymptotically negligble if αn diverges at a rate faster than 5
√

n. If αn = c2
α

5
√

n then

the limiting distribution will be a normal with nonzero mean, as shown in theorem 6, much like

in the case of nonparametric kernel estimation of a function of a single argument and indeed like

Horowitz (1992). We derive an expansion for the bias in theorem 5 and show that — subject to

additional smoothness conditions — the bias can be removed. A bias–corrected estimator then can

have a convergence rate arbitrarily close to
√

n.

8This approximation uses exp
(

βn S̃n(t)
)
≈ 1 + βn S̃n(t) and the fact that

∫
φV(t)dt = 1,

∫
tφV(t)dt = 0.
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So, letting αn increase at a rate slower than 3
√

n implicitly smoothes out the discontinuities in Ln,

much like the SMS estimator of Horowitz (1992) does explicitly.

3. CONVERGENCE RESULTS

We now proceed to state our main results. We first state our main assumptions, followed by a

discussion of 3
√

n–consistent estimators, followed by a discussion of estimators that converge faster.

We will use the maximum score case as an example to motivate the assumptions.

3.1. Assumptions. The first of our assumptions is standard in the literature and is also found in

Horowitz (1992).

Assumption A. θ0 is in the interior of some compact set Θ.

Assumption B is a condition necessary for identification. Indeed, note that Q(θ0) = 0 by construc-

tion.

Assumption B. ∀θ ∈ Θ : θ 6= θ0 ⇒ Q(θ) < 0.

Let p(a, z) = P[y = 1|a = a, z = z] and f (a|z) denote the conditional density of a at a given

z = z. For his maximum score estimator Manski (1985) requires that the support of x is not contained

in any proper linear subspace of <d, that 0 < p(a, z) < 1 for almost all a, z, and that for almost all

z, f (a|z) > 0 for all a ∈ <, which is sufficient for assumption B. Assumption B is less primitive

than the identification conditions of Manski (1985), but it applies to all estimators satisfying our

conditions.

Assumption C. π(θ0) 6= 0, π is bounded in absolute value on Θ by π̄, zero outside of Θ, and integrates to

one.

Since we can choose the prior, assumption C is innocuous. The same cannot be said for assumption

D.

Assumption D. The function Q is continuous on Θ. Further, for some q ≥ 0, Q is ∆ = q + 2 times

continuously differentiable at θ0; π is q times continuously differentiable at θ0.9 V = −Q′′(θ0) is positive

definite.

9If q = 0, π is merely assumed continuous at θ0.
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Kim and Pollard (1990) derived the 3
√

n–limiting distribution of the MSE assuming ∆ = 2. The

degree of smoothness of Q depends on that of p(·, z) and f (·|z).

For the maximum score case, Horowitz (1992) obtained a n2/5–consistent estimator subject to

assumptions including that (i) f (a|z) has a uniform upper bound in a and (almost all) z, (ii) for

almost all z, f ′(a|z) is continuous in a in a neighborhood of a = zᵀθ0 with a uniform bound over

z, (iii) for almost all z, the second partial derivative of p with respect to a, paa(a, z), is a continuous

function of a in a neighborhood of a = zᵀθ0, (iv) E‖zi‖4 < ∞, (v) V is positive definite.10 To achieve

the same convergence rate we need ∆ = 3 (see assumption H below), which implies the existence of

three moments on zi, two partial derivatives of p with respect to a at zᵀθ0, and two derivatives of

f (·|z) at zᵀθ0. So the conditions are different from but similar to those in Horowitz (1992); neither

set of assumptions implies the other and neither estimator yields a better convergence rate under

the conditions of the other. The comparison between the conditions necessary for the two estimators

to obtain a certain convergence rate is similar under additional smoothness. Since we accommodate

estimation problems other than maximum score, our conditions are less primitive. Finally, lemma

G.1 shows that for the maximum score case V = −2E
[
ziz

ᵀ
i pa(zᵀ

i θ0, zi) f (zᵀ
i θ0|zi)

]
, which by lemma

G.2 is positive definite under weak conditions.

Assumption E. E
[
supθ∈<d |gi(θ)|

]
< ∞ and for some ι, ι∗ > 0 with ι + ι∗ > 1, some function ν for which∫

‖t‖2+ιν(t)φV(t)dt < ∞, and all t ∈ <d, limα→∞ αι∗E
∣∣g̃i(θ0 + t/α)

∣∣2+ι ≤ ν(t).

Assumption E is trivially satisfied for the maximum score case since it only involves indicator

functions. The second part of assumption E is implied by assumption F below if g is a bounded

function for ι = ι∗ = 1 since the limit in assumption E is then bounded by a constant times H(t, t).

Assumption F is also used in Kim and Pollard (1990).

Assumption F. For all t, s, H(t, s) = limα→∞ αE[gi(θ0 + t/α)gi(θ0 + s/α)] exists and is finite.11

We show in lemma G.3 that for the maximum score case using the normalization adopted earlier,

H(t, s) = E
[∣∣M(zᵀ

i t, zᵀ
i s, 0)

∣∣ f (zᵀ
i θ0|zi)

]
with M the median of its arguments. Assumption G is

needed to establish weak convergence of the process S̃n to G.

10Horowitz’s conditions are phrased differently and use the conditional distribution function Fu|a,z of ‘latent variable equation’
(Manski, 1975) errors ui given regressors. Then, p(a, z) = 1− Fu|a,z(a− zᵀθ0|a, z) so that the degree of smoothness of p(·, z)
corresponds to that of Fu|a,z(·|·, z). Therefore, ∆–times differentiability of Q corresponds to (∆− 1)–times differentiability of
both f (·|z) and Fu|a,z(·|·, z). See also assumptions 8 and 9 in Horowitz (1992).
11Note that this implies that lim sup‖t‖→∞ H(t, t)/‖t‖ < ∞.
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Assumption G. Let F = {g(·; θ)}θ∈<d and for 1 = o(α̃n), let Fn = {
√

α̃ng(·; θ0 + t/α̃n)}t∈T , where

T is an arbitrary compact subset of <d. Then

(i) For all ξ in the support Ξ of ξi, g(ξ, θ) is right– (or left–) continuous at θ0.

(ii) There exists an envelope function Fn such that for all ξ ∈ Ξ: supt∈T

√
α̃n
∣∣g(ξ; θ0 + t/α̃n)

∣∣ ≤ Fn(ξ)

and E[F2
ni] = O(1) where Fni = Fn(ξi).

(iii) For any ε > 0, E[F2
ni I(Fni > ε

√
n)] = o(1).

(iv) For any εn ↓ 0, sup‖t−s‖<εn
α̃nE

[
(gi(θ0 + t/α̃n)− gi(θ0 + s/α̃n))2

]
= o(1).

(v) Let N (ε, Fn, L2(P)) be the (L2–) covering number for Fn with respect to the probability measure

P . Then for every εn ↓ 0, supQ

∫ εn
0

√
log
(
N
(
ε‖Fn‖Q,2, Fn, L2(Q)

))
dε = o(1).

Assumption G is common, but is not always straightforward to verify. It ensures weak conver-

gence of S̃n to G and is satisfied in the maximum score case as theorems 1 and 2 show.

Theorem 1. Under assumptions A–G, S̃n
w→ G on L ∞(T1, T2, . . .) for any increasing sequence of compact

sets Tj such that 0 ∈ T1 and whose union is <d, where L ∞(T1, T2, . . .) is the space of functions which are

uniformly bounded on each Tj.

Proof. The proofs of all theorems are in appendix H. 2

Theorem 2. For the maximum score case, under assumptions A–E, if α̃n = o(n) then assumption G is

satisfied if E
[
sups f (s|zi)‖zi‖

]
< ∞.

3.2. Cube–Root–n–Convergence. We are now in a position to state our limit results. The first of

these deals with the case αn = c2
α

3
√

n. Let G be a mean zero Gaussian process on <d with covariance

kernel H.

Theorem 3. (i) If αn = c2
α

3
√

n for some 0 < cα < ∞ and assumptions A–G hold with α̃n = αn then

3
√

n(θ̂− θ0)
d→ 1

c2
α

∫
t exp

(
c3

αG(t)
)
φV(t)dt∫

exp
(
c3

αG(t)
)
φV(t)dt

. (6)

(ii) If 3
√

n = o(αn), π = minθ∈Θ π(θ) > 0, and assumptions A–G hold with α̃n = 3
√

n then for G̃(t) =

G(t)− tᵀVt/2,
3
√

n(θ̂− θ0)
d→ argmax

t
G̃(t). (7)

Theorem 3 establishes that our estimator has the same rate of convergence as the Kim and Pollard

(1990) estimator, i.e. the equivalent extremum estimator, if one lets αn increase at a rate no slower

than 3
√

n. In fact, part (ii) of theorem 3 demonstrates that if αn increases faster than 3
√

n then the limit
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distributions of the Kim and Pollard (1990) estimator and ours coincide. There is continuity between

parts (i) and (ii) of theorem 3 since if one lets cα → ∞ after n→ ∞, then the limit distribution of (i)

converges to that of (ii). To see this, consider a different representation of the same limit distribution

that arises if c4
α is incorporated into gi instead of into α2

n.12 Then

3
√

n(θ̂− θ0)
d→
∫

t exp
{

c4
α

(
G(t)− tᵀVt/2

)}
dt∫

exp
{

c4
α

(
G(t)− tᵀVt/2

)}
dt

. (8)

For large values of cα, the right hand side of (8) is close to the value at which G(t) − tᵀVt/2

is maximized, whose distribution is exactly the limit distribution of the Kim and Pollard (1990)

estimator.

Likewise, it follows from (6) and l’Hôpital’s rule that 3
√

n(θ̂− θ0) converges to zero as cα ↓ 0. More

interestingly, noting that
√

n/αn = 3
√

n/cα, (6) suggests that
√

n/αn(θ̂− θ0) has an approximate∫
tG(t)φV(t)dt–distribution, which is indeed the normal distribution of theorem 4 below.

Intuitively, then, the accuracy of θ̂ is decreasing in the value of cα with the Kim and Pollard (1990)

estimator the least efficient possibility. In numerical results reported in section 5 we find that the

limiting distribution indeed becomes more dispersed as cα increases. But please note that these are

asymptotic results; for small values of cα the small sample bias can be substantial. Nevertheless, the

Kim and Pollard (1990) estimator (or indeed our estimator with αn = ∞), and hence the maximum

score estimator, is unlikely to be the optimal choice in the class of estimators studied here, even in

samples of finite size.

3.3. Faster convergence. We now proceed with the case in which αn increases more slowly than
3
√

n. Let 
Nn = αd

n
√

n/αn
∫

π(θ)(θ − θ0) exp
(
α2

nSn(θ) + α2
nQ(θ)

)
dθ,

Dn = αd
n
∫

π(θ) exp
(
α2

nSn(θ) + α2
nQ(θ)

)
dθ,

Bn = αd
n
√

n/αn
∫

π(θ)(θ − θ0) exp
(
α2

nQ(θ)
)
dθ.

(9)

Theorem 4. If αn = o( 3
√

n) and assumptions A–G are satisfied with α̃n = αn, then√
n
αn

(θ̂− θ0)−
Bn

Dn
=

Nn −Bn

Dn

d→ N(0, V ), (10)

where V =
s

tsᵀH(t, s)φV(t)φV(s)dtds.

12Alternatively, one can carry out the substitution t̃ = t/c2
α and note that the process G∗ with G∗(t̃) = G(c2

α t̃)/cα has the
same statistical properties as G.
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In lemma G.4 we show that for the maximum score case in which the regressor vector includes a

constant,13

V =
1

2
√

π
V−1E

[
ziz

ᵀ
i√

zᵀ
i V−1zi

f (zᵀ
i θ0|zi)

]
V−1, (11)

which suggests that using observation–specific weights can reduce (some scalar–valued function of)

the asymptotic variance.14 Some scale normalization of the weights should be imposed lest they

assume the role of αn. We do not pursue a weighting procedure in this paper.

The bias term Bn can affect the limiting distribution. As will become apparent below, if Q is

sufficiently smooth then Bn decreases at a rate of 1/αnβn =
√

n/α5
n, meaning that αn ∼ 5

√
n yields

the typical nonparametric convergence rate of n−2/5, also found in Horowitz (1992) (for his h = 2).

We first state our assumption requiring additional smoothness of Q.

Assumption H. q ≥ 1.

We can now obtain a simple expansion for the bias, followed by an expression of the asymptotic

distribution of n2/5(θ̂− θ0) when αn = c2
α

5
√

n.

Theorem 5. Let assumptions A–H be satisfied. For finite weights b∗qτ independent of n and which are zero

for even τ, Bn = β−1
n ∑

q
τ=0 b∗qτ/ατ

n + o
(
α
−q
n β−1

n
)
.

An expression for the values of b∗qτ is provided in the proof of theorem 5. In particular, b∗q1 =

CV
∫ (

π0DQ3(t) + Dπ1(t)
)
tφV(t)dt, where CV = 1/φV(0), π0 = π(θ0), Dπ1(t) is the first term in a

Taylor expansion of π(θ0 + t) about π(θ0), i.e. tᵀπθ(θ0), and DQ3(t) is the third term in a Taylor

expansion of Q(θ0 + t) about Q(θ0). This then leads to the following result.

Theorem 6. For any 0 < cα < ∞, if αn = c2
α

5
√

n and assumptions A–H are satisfied, then

n2/5(θ̂− θ0)
d→ N

(∫ (
π0DQ3(t) + Dπ1(t)

)
tφV(t)dt

π0c4
α

, c2
αV

)
. (12)

It is possible to minimize the asymptotic mean square error (AMSE, squared mean plus variance

in (12)) by using an estimate of c∗α1 = 10
√

4‖b∗q1‖2/C2
Vπ2

0 tr(V ) in lieu of cα. However, because the

asymptotic bias can be removed by the choice of a prior and since the asymptotic distribution using

c∗α1 would have nonzero mean — which is at odds with the uniform inference procedure at the heart

of this paper — we do not include this result here; it is available from the authors’ website.

13What is needed is in fact weaker: for some j = 1, . . . , d: P[zij = 0] = 0.
14Like in other contexts (Cragg, 1992; Pinkse, 2006), a scalar–valued weight function which optimizes the asymptotic variance
of all linear combinations of the coefficients of θ̂ does not typically exist.
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For the specific case of maximum score, the limit distribution of theorem 6 can be compared to

that of the SMS estimator of Horowitz (1992). Generally, which estimator has a smaller mean square

error depends on the choice of input parameters (kernel and bandwidth in the case of SMS, prior

and cα here) and the joint distribution of (yi, ai, zi). It can be shown that for the very special case in

which d = 1, zi = 1 a.s., a normal kernel is used for the SMS estimator and a flat prior is used for

ours, and bandwidth (SMS) and cα are chosen to minimize the asymptotic mean square error, the

asymptotic mean square error of both estimators is identical regardless of the joint distribution of

(yi, ai).15 A flat prior is however not a particularly good choice as theorem 7 demonstrates.

3.4. Bias Correction. There are many ways to correct the bias. Besides various resampling schemes,

one could choose a prior to remove the bias or estimate the bias directly. We discuss both possibilities

below.

From (12) it follows that the bias depends on the choice of prior as well as the values of the second

and third partial derivatives of Q. These derivatives are estimable. As noted in theorem 5, b∗qτ = 0

for all even values of τ. Consequently, provided that an estimator b̂∗q1 of b∗q1 converges to b∗q1, we

obtain the result

n2/5(θ̂− θ0)−
b̂∗11

c4
αDn

d→ N(0, c2
αV ). (13)

With q = 3 and αn = c2
α

9
√

n, (13) can be strengthened to

n4/9(θ̂− θ0)−
n2/9b̂∗31

c4
αDn

− b̂∗33
c8

αDn

d→ N(0, c2
αV ),

assuming b̂∗31 converges to b∗31 at a rate faster than n2/9 which, in light of the smoothness condition

q = 3, should not be problematic. This process can be repeated to obtain an estimator of θ0 which

converges at a rate arbitrarily close to
√

n, assuming sufficient smoothness. In particular, using

αn = c2
αn1/(2q+3) leads to

n
q+1

2q+3 (θ̂− θ0)−
1

Dn

q

∑
τ=0

n
q−τ
2q+3 b̂∗qτ

c2τ+2
α

d→ N
(
0, c2

αV
)
, (14)

where b̂∗qτ = 0 for even values of τ.

It turns out that removing the bias in theorem 6 can also be accomplished by choosing a prior that

resembles Jeffreys’ prior (Jeffreys, 1946), here π(θ) ∝
√

det
(
−Q′′(θ)

)
, near θ0. However, since Q is

not necessarily globally concave one should choose a prior which is both everywhere bounded and

which resembles Jeffreys’ prior in a neighborhood of θ0. An example is πJ(θ) ∝
√∣∣det

(
−Q′′(θ)

)∣∣,
15The derivation is available upon request.
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which can be estimated by π̂J(θ) ∝
√∣∣det

(
−Q̂′′(θ)

)∣∣ for some estimator Q̂′′ which satisfies the

following assumption. Let vec denote the familiar vec–operator, which stacks the columns of a

matrix into a vector and let Q′′′ and Q̂′′′ be defined as ∂ vecᵀ Q′′/∂θ and ∂ vecᵀ Q̂′′/∂θ, respectively.

Assumption I. For r∗ ≥ 0 and any ρn = o
(
1/αn

)
, Q̂′′ is bounded on Θ and satisfies

sup
‖θ−θ0‖≤ρn

(
‖Q̂′′(θ)−Q′′(θ)‖+ ‖Q̂′′′(θ)−Q′′′(θ)‖

)
= op

(
α−r∗

n
)
.

The conditions specified in assumption I are generic because the properties of Q′′ depend on the

nature of gi, on which we only imposed generic conditions. In the maximum score case, Q′′ and

Q′′′ are average derivatives (Powell, Stock, and Stoker, 1989) and hence can typically be estimated at

a rate much faster than the d + 1–dimensional nonparametric rate. For r∗ = 0, no rate is required.

For r∗ = 2, a rate of n2/5 is sufficient, but when we require r∗ = 2 more derivatives of Q′′ will be

available. Let θ̂J denote the estimator which is identical to θ̂ except that it uses the prior π̂J defined

above.

Theorem 7. Let assumptions A–H be satisfied.

(i) If αn = c2
α

5
√

n and assumption I is satisfied with r∗ ≥ 0, then n2/5(θ̂J − θ0)
d→ N(0, c2

αV ).

(ii) If 9
√

n = O(αn), q ≥ 3, and assumption I is satisfied with r∗ ≥ 2, then for some finite BJ ,
√

n/αn(θ̂J −

θ0)−BJ/α3
nβnDn

d→ N(0, c2
αV ).

So subject to the conditions of theorem 4, using (an estimate of) Jeffreys’ prior yields a zero mean

limiting normal distribution (part (i) of theorem 7), and with extra derivatives the n4/9–rate obtains.

Further bias reduction can be obtained by choosing a prior which knocks out the higher order

bias terms, also. Because the bias only depends on derivatives of Q′′ and π at θ0, such priors are

straightforward to construct by using suitable polynomials in θ − θ0 whose coefficients consist of

estimated derivatives of Q′′ at θ0, albeit that this procedure would require an initial plugin estimator

to use in lieu of θ0, whereas such an initial plugin estimator is not required for π̂ used in theorem

7. An example of such a polynomial prior which removes the τ = 1 term in the bias expansion of

theorem 5 is π̃(θ) =
√

det
(
−Q̃′′(θ)

)
, with

Q̃′′(θ) = Q′′(θ0)/2

+
(

Q′′′(θ0)
(

I ⊗ (θ − θ0)
)
+ Q′′(θ0)

)ᵀ(
Q′′(θ0)

)−1 ×
(

Q′′′(θ0)
(

I ⊗ (θ − θ0)
)
+ Q′′(θ0)

)
, (15)
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which is guaranteed to be negative definite since it is the sum of a negative definite and negative

semidefinite matrix. Methods for estimating Q′′ and Q′′′ for the maximum score case are discussed

in appendix I.3.

An alternative to removing the bias by one’s choice of prior is to estimate the bias directly. The

bias term in theorem 6, for instance, can be estimated using∫ (
π0DQ̂3(t) + Dπ1(t)

)
tφV̂ (t)dt

π0c4
α

. (16)

In particular, for d = 1 and a flat prior, (16) reduces to Q̂′′′(θ̂p)/2c4
α

(
Q̂′′(θ̂p)

)2, with θ̂p some

preliminary estimator.

Since the form of an estimator of Q′′ and its derivatives depends on the nature of gi, establishing

general analytical results for the bias correction is not possible. It would be possible to do so for

the maximum score case, but this would entail not much more than a rehash of results that are

well–known and are available in the literature.

For the maximum score case, nonparametric estimators can be shown to be uniformly consistent

for Q′′ and Q′′′ in a neighborhood of θ0 that decreases more slowly than θ̂p. So consistency obtains

and the bias up to order n−2/5 is removed.

4. UNIFORM INFERENCE

To conduct inference one can draw random numbers from the Kim and Pollard (1990) limit

distribution if αn increases faster than 3
√

n, from the limit distribution of theorem 3 if αn increases at

the 3
√

n rate, or use the normal of theorem 4 if αn increases more slowly than 3
√

n. Since these are

only rates for αn, in a sample of finite size it is generally not clear which of these three distributions

should be used. Let Ĝ be G with H replaced with some estimator Ĥ. As it turns out, provided that

the bias is asymptotically negligble, for κn defined in section 2.1 and V̂ some consistent estimator of

V, χn = κn(θ̂− θ0) and

Ψn =

∫
t exp

(
βn1Ĝ(t)− βn2tᵀV̂ t/2

)
dt∫

exp
(

βn1Ĝ(t)− βn2tᵀV̂ t/2
)
dt

, with

 βn1 = min
(

β3/2
n , β4/3

n
)
,

βn2 = min
(

β2
n, β4/3

n
)
,

(17)

have the same limiting distribution in all three cases.
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Theorem 8. If V̂ −V = op(1) and Ĥ is a positive semidefinite covariance kernel16 which is pointwise consis-

tent for H and for some 0 < cH < 2 and all sample paths of Ĥ satisfy lim sup‖t‖→∞
(

Ĥ(t, t)/‖t‖cH
)

< ∞,

then Ψn has the limiting distribution derived for χn in the corresponding portion of theorems 3 and 417 if (i)

βn = o(1), (ii) 1/βn + βn = O(1), (iii) 1/βn = o(1).

The requirement that Ĥ be a positive semidefinite covariance kernel is both necessary and

sufficient for there to exist a Gaussian process Ĝ with that covariance kernel (Doob, 1953, theorem

3.1). Drawing random numbers using (17) is simple and is explained in appendix I.2.

So the proposed inference procedure is uniform in the divergence rate of αn despite the fact that

the limiting distribution of θ̂ depends on the rate at which αn increases.

The limiting distribution of Laplace–type estimators sometimes coincides with the limit of the

posterior, i.e. limn→∞ exp
(
α2

nLn(θ0 + t/αn)
)

up to a proportionality constant. Indeed, Chernozhukov

and Hong (2003) derived conditions under which this is the case for objective functions that admit a

quadratic expansion. In the case of coincidence of the true distribution and the limit of the posterior,

the (Gibbs) draws used to obtain θ̂ can then be used to construct confidence intervals. Here the limit

of the posterior is a random object if αn increases at the rate of 3
√

n (or faster) and is N(0, V−1) if αn

increases more slowly than 3
√

n. So in neither case are the posterior and estimator limit distributions

the same.

5. PERFORMANCE

As noted before, the main caveat of our estimator is the need to choose input parameters π, αn.

The ability to choose a prior has been shown to be valuable in bias reduction, at least theoretically.

Its practical value is examined later on in this section. We begin by analyzing the effect of one’s

choice of αn.

We consider a small number of designs, all in the context of the maximum score estimation

problem. In all cases yi = I
(
zᵀ

i θ0− ai + ς(ai, zi)ui ≥ 0
)
, where ui is a standard normal independent

of ai, zi which are also standard normal and have mutually independent elements. Unless otherwise

stated θ0 = [0,~1ᵀ]ᵀ, where ~1 ∈ <d−1 is a vector of ones and the prior is uniform on a compact

support, typically [−2, 2].

For figure 1 we used d = 2 and ς2 = (z2
1 + 1)/2. Figure 1 illustrates how (for a single data set)

the normalized posterior varies with αn; the value at θ0 equals one. Larger values of αn lead to a

16Ĥ is a positive semidefinite covariance kernel if for any integer 0 < T∗ < ∞ and any values t1, t2, . . . , tT∗ ∈ <d, the matrix
with (i, j)–element Ĥ(ti , tj) is positive semidefinite.
17Please note that for part (i) of theorem 3, κn and 3

√
n can differ by a multiplicative constant.
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(
α2

nLn(θ01, θ2)
)

αn = 10
αn = 4

FIGURE 1. One draw of exp
(
α2

nLn(0, θ2)
)
; n = 1, 000.

narrower posterior density, so θ̂2 is an average over a comparatively small range of θ–values. In this

particular instance the posterior density for αn = 10 is close to the truth (one), but for other data sets

it may not be. Because it is an average over fewer θ–values whose range varies from one data set to

another, θ̂ for αn = 10 has a greater variance than for αn = 4. But the bias is less for greater values

of αn. One reason is that the posterior is asymmetric; in figure 1 the posterior for αn = 4 tapers off

much faster to the left than it does to the right, which is due to the particular design used.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0
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10

θ2

f
αn = 0.1
αn = 2.5
αn = 10
αn = 40

FIGURE 2. Density of θ̂2 for various choices of αn; d = 2, n = 1, 000



18

A secondary cause of the bias is that for smaller values of αn, the prior receives relatively more

weight, thereby biasing one’s estimates in the direction of the mean of the prior. Inspection of the

formula for b∗qτ in the proof of theorem 5 demonstrates that the asymptotic bias depends on the

prior and its derivatives only at θ0; the value of the prior and its derivatives at other values of θ

are irrelevant for the asymptotic bias. For a flat prior the derivatives at θ0 are all zero and the prior

drops out of the bias formula. Therefore, the secondary bias is not correctible with the methods of

section 3.4.

To see that this secondary bias can be substantial for small values of αn, consider figure 2. For

very small values of αn the distribution of θ̂2 is centered around the mean of the prior (zero). As αn

increases this secondary bias decreases until it becomes small compared to the primary (asymptotic)

and correctible bias for αn = 10. Here the primary bias is positive.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

2

4

6

8

10

θ2

f
αn = 0.1
αn = 2.5
αn = 10
αn = 40

FIGURE 3. Density of θ̂2 for various choices of αn; d = 2, n = 1, 000, prior mean
coincides with true value.

This point is reinforced by figure 3, which represents the results of an experiment identical to the

one for figure 2, except that the mean of the prior coincides with the value of θ02; both equal one.

There is some bias for smaller values of αn, but this bias is all in the same direction; positive.

A heuristic method for choosing αn, then, is to compute the value of θ̂ for two flat priors with

different means, say θ̂(1), θ̂(2), and to choose the smallest value of αn for which the difference

between θ̂(1) and θ̂(2) is small. Subsequently, the imputed value of αn can be used with a prior

of one’s choosing. Alternatively, the procedure of choosing αn can be tailored to the nature of the
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objective function, e.g. one could construct a method for choosing αn specific to the maximum score

case.

0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

θ2

f
αn = 32
αn = 10
αn = 5.6
αn = 4.0

FIGURE 4. Density of θ̂2 for various values of αn; d = 10, n = 1, 000

The experiment depicted in figure 2 is repeated in figure 4 with d = 10. The results suggest that

the value of αn need not depend on d, but that the rewards for a good choice of αn increase. Indeed,

the estimator variance is substantial for αn = 32 and would be still greater for the maximum score

estimator. In fact, for a 3
√

n–consistent estimator to overcome the difference in variances between

αn = 10 and αn = 32 over ten times as many observations would be needed.18

Figure 5 underlines the value of heteroskedasticity–robust estimators for the binary choice model,

such as the (smoothed) maximum score estimator and our Laplace–transform based estimator. Even

though there is only a modest amount of heteroskedasticity and the error distribution is normal,

the probit estimator has substantial bias. Naturally, under homoskedasticity with a normal error

distribution the probit estimator will outperform the robust estimators since, as figure 5 indicates,

its variance is considerably smaller than that of the other estimators. It is also clear that here too the

maximum score estimator19 has greater variance than the Laplace–type estimators, which suggests

that choosing αn = ∞ is suboptimal even without bias correction.

We now investigate the performance of one of the proposed bias–correction techniques, namely

the use of Jeffreys’ prior. It should be pointed out that using Jeffreys’ prior takes more time than the

18The ratio of variances of θ̂–values (for αn = 32 versus αn = 10) in the simulations is about 5.8; the number ten comes from
the fact that 5.83/2 = 14 > 10.
19Computed using a grid search.
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FIGURE 5. Density of θ̂2; probit versus maximum score and Laplace; d = 2, n =
1, 000
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FIGURE 6. Density of θ̂2; Jeffreys (solid) versus uniform (dashed) prior; n = 1, 000,
d = 2.

flat prior unless the conditional prior of one element of the parameter vector given the others has a

closed form solution. For our experiments, the cost of using Jeffreys’ prior was far from prohibitive.

If computation time becomes a serious issue, one can instead opt for the more convenient, faster, and

asymptotically equivalent form presented in (15), albeit that we expect the finite sample performance

of such a procedure to be inferior.

Figure 6 depicts the bias for Jeffreys’ prior and the correctly centered uniform prior for varying

values of αn. The support of Jeffreys’ prior was chosen such that the mean of Jeffreys’ prior was

also equal to one. The purpose of setting the mean of the prior equal to the truth is to assess the

ability of Jeffreys’ prior to correct the asymptotic bias without obfuscating the comparison by the



21

asymptotically negligible bias caused by the discrepancy between the mean of the prior and the true

parameter value.
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FIGURE 7. Density of θ̂2; Jeffreys (solid), uniform (dashed), estimated Jeffreys
(dotted) prior; n = 1, 000, d = 2.

Figure 6 demonstrates that the bias decreases in αn for both priors, and that using Jeffreys’ prior

removes most of the bias of the uniform kernel, which is encouraging. It is apparent, however, that

even Jeffreys’ prior does not remove all asymptotic bias, especially when αn is small, which is due to

the fact that for small values of αn the higher order terms in the bias expansion are of comparatively

greater importance.

We repeated the same experiment, but now with the estimated version of Jeffreys’ prior included.

The results are depicted in figure 7. Q′′ was estimated using the method descibed in appendix I.3.

Evidently, the error in estimating Q′′ is small relative to the bias reduction vis–à–vis the uniform

prior. We conclude that an asymptotic bias correction using Jeffreys’ prior is valuable unless αn is

chosen large.

Finally, we evaluate the quality of our uniform inference procedure; the results are in figure 8.

As figure 8 demonstrates, the uniform inference procedure of theorem 8 moves gradually from

the maximum score limiting distribution to the normal limiting distribution as αn (and hence βn)

decreases. It does a good job approximating the finite sample distribution of θ̂2 except that for small

values of αn there is substantial bias, which is due to the fact that estimates used to generate the

finite sample distribution are not higher order bias–corrected.20

The reason that the results in figure 8 use a design with d = 2 only is that the limiting distribution

of the maximum score estimator becomes very expensive to simulate for higher dimensions. This

20We do use Jeffreys’ prior.
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FIGURE 8. Density of κn(θ̂2 − θ0) for various inference procedures: uniform (solid),
normal (dashed), maximum score (dotted), finite sample (densely dashed); n =
1, 000, d = 2, R = 3, 000.

suggests that one should use our uniform inference procedure with a high value of βn to simulate the

limiting distribution of the maximum score estimator instead of trying to maximize Ĝ(t)− tᵀV̂ t/2

repeatedly. We found that the pattern of the remaining three densities for greater values of d (not

shown) is similar to the one depicted in figure 8.
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APPENDIX A. PRELIMINARIES

A.1. Notation. Let γn = α
1/(4q+4)
n , Γn = {t ∈ <d : ‖t‖ ≤ γn}, and Γc

n = <d − Γn. Let further for

vector–valued t, tj denote 1 if j = 0 and t if j = 1. Define CV =
∫

exp(−tᵀVt/2)dt = 1/φV(0) =

(2π)d/2/
√

det(V) and let λ− be the smallest eigenvalue of V. Finally, let Rn(t) = Qn(t) + tᵀVt/2.

A.2. Weak Convergence. The results in this section presume that assumptions F and G are satisfied.

Lemma A.1. Let T1 ⊆ T2 · · · be a sequence of compact sets such that 0 ∈ T1 and <d =
⋃∞

i=1 Ti. We then

have S̃n
w→ G in L ∞(T1, T2, . . .), where G(·) is a Gaussian process with covariance kernel H.

Proof. By van der Vaart and Wellner (1996, theorem 1.6.1), it suffices to establish the weak conver-

gence of S̃n in L ∞(T ) for an arbitrary compact set T ⊂ <d. Since T is dense, assumption G(i)

ensures that for j = 1, 2,

F
j
n,ε = {α̃j/2

n (g(·; θ0 + t/α̃n)− g(·; θ0 + t/α̃n))j}‖t−s‖<ε

is a pointwise measurable class, and hence P–measurable for every P ; see van der Vaart and Wellner

(1996, page 110). Note also that E
[
S̃n(t)S̃n(s)

]
= α̃nE

[
gi(θ0 + t/α̃n)gi(θ0 + s/α̃n)

]
→ H(t, s) for

every t, s ∈ T by assumption F. Therefore, the result follows from van der Vaart and Wellner (1996,

theorem 2.11.22). 2

Lemma A.2. Let for γ̃ > 0, Γ̃ = {t ∈ <d : ‖t‖ ≤ γ̃}. Then (i) for any 0 < c < ∞,

limγ̃→∞ limn→∞ P
[
supt∈Γ̃c

∣∣S̃n(t)
∣∣/‖t‖2 > c

]
= 0 and (ii) P

[
supt∈Γc

n

∣∣S̃n(t)
∣∣/‖t‖2 > c

]
= o(1).

Proof. Let ˜̃Sn(t) = S̃n(t)/‖t‖ and G̃(t) = G(t)/‖t‖. Suppose without loss of generality that α1 = 1.

Then the equicontinuity of ˜̃Sn on Γc
1 follows from that of S̃n. Therefore on Γc

1, ˜̃Sn
w→ G̃, which

is a uniformly bounded process in L ∞(Γc
1). Hence, to establish (ii) ((i) is similar), note that

supt∈Γc
n

(∣∣S̃n(t)
∣∣/‖t‖2) ≤ supt∈Γc

1

(∣∣S̃n(t)
∣∣(log ‖t‖)/‖t‖2)/ log γn = Op(1)o(1) = op(1). 2
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Lemma A.3. For any c > 0, supt
{∣∣S̃n(t)

∣∣− ctᵀVt
}

= Op(1).

Proof. Follows immediately from lemma A.1 and the properties of G. 2

A.3. Auxiliary Results.

Lemma A.4. limε↓0 sup‖θ−θ0‖≤ε ‖Q′′(θ) + V‖ = 0.

Proof. Follows from the continuity of Q′′ at θ0. 2

Lemma A.5. For some 0 < cq < ∞ and all θ ∈ Θ, Q(θ) ≤ −min(cq, (θ − θ0)′V(θ − θ0)/4) and

Qn(t) ≤ −min(α̃2
ncq, tᵀVt/4) for all t for which θ0 + t/α̃n ∈ Θ.

Proof. Follows from the fact that (i) Θ is compact, (ii) Q has a unique maximum of zero at θ0, and

(iii) Qθθ is continuous at θ0 with value −V. 2

Lemma A.6. For any |c| ≤ 1, any b, and any nonnegative integer j,
∣∣exp(cb) − ∑

j
s=0(cb)s/s!

∣∣ ≤
|c|j+1 exp(|b|).

Proof. We have∣∣exp(cb)−∑
j
s=0(cb)s/s!

∣∣ ≤ ∣∣∑∞
s=j+1(cb)s/s!

∣∣ ≤ |c|j+1 ∑∞
s=j+1 |b|s/s! ≤ |c|j+1 exp(|b|). 2

A.4. Further Auxiliary Results. The results in this section presume that 0 ≤ limn→∞ βn = cβ < ∞

and that α̃n = αn.

Lemma A.7. For all nonnegative and finite c1, c2, c3, c4 and any polynomial P,

(i) if c3 > 0 then
∫

Γc
n
‖P(t)‖ exp

(
c1βn|S̃n(t)| − c3tᵀVt

)
dt = op

(
α−c4

n
)
,

(ii) if c2 + c3 > 0 then
∫

Γc
n
‖πn(t)P(t)‖ exp

(
c1βn|S̃n(t)|+ c2Qn(t)− c3tᵀVt

)
dt = op

(
α−c4

n
)
.

Proof. First (i). By lemma A.2, the left hand side of (i) is for any c of smaller order than∫
Γc

n
‖P(t)‖ exp

(
(cc1cβ − c3λ−)‖t‖2)dt, which for sufficiently small c decreases exponentially in n.

The left hand side in (ii) is by lemma A.5 of order no greater than

∫
Γc

n

‖πn(t)P(t)‖ exp
(
c1βn|S̃n(t)| − c2 min(cqα2

n, tᵀVt/4)− c3tᵀVt
)
dt

≤
∫

Γc
n

‖πn(t)P(t)‖ exp
(
c1βn|S̃n(t)| − c2cqα2

n − c3tᵀVt)dt

+
∫

Γc
n

‖πn(t)P(t)‖ exp
(
c1βn|S̃n(t)| − (c2/4 + c3)tᵀVt

)
dt. (18)

The second right hand side term in (18) was dealt with in (i). If c3 > 0, the first right hand side term

is bounded by the same expression with c2 = 0, which was dealt with in (i), also. Finally, the first
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right hand side term if c3 = 0. Since supθ |Sn(θ)| = op(1) by lemma A.3, it follows that for some

c∗ > 0,
∫

Γc
n
‖πn(t)P(t)‖ exp

(
c1βn|S̃n(t)| − c2cqα2

n)dt is of order no greater than exp
(
−c∗α2

n
)
. 2

Lemma A.8. For any c > 0, (i) P
[
supt∈Γn

I
(
|Rn(t)| > ctᵀVt/4

)
6= 0

]
= o(1).

Proof. Follows from lemma A.4, γn = o(αn), and the fact that Rn(t) = tᵀ
(
Q′′(θ0 + t/αn) + V

)
t/2.

2

Lemma A.9. For all nonnegative and finite c1, c2, c3, c4 and any polynomial P,

(i) if c3 > 0 then
∫
‖P(t)‖ exp

(
c1βn|S̃n(t)| − c3tᵀVt

)
dt = Op(1),

(ii) if c2 + c3 > 0 then
∫
‖πn(t)P(t)‖ exp

(
c1βn|S̃n(t)|+ c2Qn(t)− c3tᵀVt

)
dt = Op(1).

Proof. By lemma A.7, we only need to show that the integrals over t ∈ Γn are Op(1). For (i) the

stated result follows from lemma A.1. For (ii), it follows from lemmas A.1 and A.8. 2

APPENDIX B. αn = c2
α

3
√

n

Lemma B.1. For j = 0, 1,
∫

Γn
πn(t)tj exp

(
c3

αS̃n(t)
)(

exp
(

Rn(t)
)
− 1
)

φV(t)dt = op(1).

Proof. By lemma A.6 for b = Rn(t)/c, the left hand side is bounded in absolute value by

c
∫

Γn
‖πn(t)tj‖ exp

(
c3

α|S̃n(t)|+ |Rn(t)/c| − tᵀVt/2
)
dt, which with probability approaching one is

bounded above by c
∫

Γn
‖πn(t)tj‖ exp

(
c3

α|S̃n(t)| − tᵀVt/4
)
dt d→ cΥ by lemma A.1 for some Υ inde-

pendent of c. Let c ↓ 0. 2

Lemma B.2. For j = 0, 1,
∫

πn(t)tj exp
(
c3

αS̃n(t) + Qn(t)
)
dt = CVπ0

∫
tj exp

(
c3

αS̃n(t)
)
φV(t)dt +

op(1).

Proof. We have

∫
πn(t)tj exp

(
c3

αS̃n(t) + Qn(t)
)
dt− CVπ0

∫
tj exp

(
c3

αS̃n(t)
)
φV(t)dt

=
∫

Γc
n

πn(t)tj exp
(
c3

αS̃n(t) + Qn(t)
)
dt + CV

∫
Γn

πn(t)tj exp
(
c3

αS̃n(t)
)(

exp
(

Rn(t)
)
− 1
)

φV(t)dt

+ CV

∫
Γn

(
πn(t)− π0

)
tj exp

(
c3

αS̃n(t)
)
φV(t)dt− π0

∫
Γc

n

tj exp
(
c3

αS̃n(t)− tᵀVt/2
)
dt. (19)

The first and last right hand side terms in (19) are dealt with in lemma A.7. The second right hand

side term in (19) is op(1) by lemma B.1. Because π is continuous at θ0, the third right hand side term

in (19) is also op(1) by lemma A.3. 2
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APPENDIX C. 3
√

n = o(αn)

Lemma C.1. Let γ̃, Γ̃ be as in lemma A.2. Let further L̃n(t) = S̃n(t) + Qn(t) Then∫
Γ̃ πn(t)t exp

(
β4/3

n L̃n(t)
)
dt∫

Γ̃ πn(t) exp
(

β4/3
n L̃n(t)

)
dt

d→ argmax
t∈Γ̃

G̃(t).

Proof. Note that L2(Γ̃, B, µ) is separable where B is the Borel sigma algebra. Since G̃(t) = G(t)−

tᵀVt/2, L̃n, G̃ are both in L2(Γ̃, B, µ) and L̃n
w→ G̃ by lemma A.1 and the fact that

sup
t∈Γ̃

∣∣Qn(t) + tᵀVt/2
∣∣ ≤ γ̃2 sup

‖θ−θ0‖≤γ̃/ 3√n
‖Q′′n(θ) + V‖/2 = op(1), (20)

by lemma A.4. Hence, by the Skorokhod representation theorem (Billingsley, 1999, theorem 6.7),

there exist L̃∗n , G̃∗ with the same distributions as L̃n, G̃, such that for an arbitrary sample path

L̃∗n = L̃∗n(·; ω) of L̃∗n and corresponding sample path G̃∗ = G̃∗(·; ω) of G̃∗,∫
Γ̃
|L̃∗n(t)− G̃∗(t)|2dt = o(1). (21)

Let for arbitrary sets T1, T2 ⊂ Γ̃, d∗(T1, T2) = µ(T1− T2) + µ(T2− T1). Let further for arbitrary c > 0,

T(κ, c) = {t ∈ Γ̃ : |κ(t)− Ḡ∗| ≤ c}, where Ḡ∗ = maxt∈Γ̃ G̃∗(t). We first establish that

d∗
(
T(L̃∗n, c), T(G̃∗, c)

)
= o(1). (22)

Let T1n(c) = T(L̃∗n, c)− T(G̃∗, c) and T2n(c) = T(G̃∗, c)− T(L̃∗n, c). We show that µ
(
T2n(c)

)
= o(1)

where the same result for T1n(c) follows similarly. Let for arbitrary c∗ > 0, T∗n (c∗) = {t ∈ Γ̃ :

|L̃∗n(t) − G̃∗(t)| ≤ c∗}. For the remainder of this lemma, define complements relative to Γ̃ (e.g.

T∗cn (c∗) = Γ̃− T∗n (c∗)). Because µ
(
T∗cn (c∗) ∩ T2n(c)

)
≤ µ

(
T∗cn (c∗)

)
= o(1) by (21), we only need to

consider µ
(
T∗n (c∗) ∩ T2n(c)

)
.

Note first that T∗n (c∗) ∩ T2n(c) ⊆ T∗∗n (c, c∗) = {t ∈ Γ̃ : c ≤ |L̃∗n(t)− Ḡ∗| ≤ c + c∗}, such that by

(21),

lim
c∗↓0

lim
n→∞

µ
(
T∗∗n (c, c∗)

)
= lim

c∗↓0
µ
(
{t ∈ Γ̃ : c ≤ |G̃∗(t)− Ḡ∗| ≤ c + c∗}

)
= µ

(
{t ∈ Γ̃ : |G̃∗(t)− Ḡ∗| = c}

)
= 0, (23)

because G̃∗ is continuous and nowhere differentiable. So (22) holds.

Finally, note that for j = 0, 1 and some finite constant C,∫
Tc(L̃∗n ,c)

‖t‖j |πn(t)| exp
{

β4/3
n
(

L̃∗n(t)− Ḡ∗
)}

dt ≤ C exp(−β4/3
n c)

∫
‖t‖j |πn(t)|dt = o(1),
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since the support of πn is only increasing at a rate of αn by assumption C. Thus,∫
Γ̃ πn(t)t exp

(
β4/3

n L̃∗n(t)
)
dt∫

Γ̃ πn(t) exp
(

β4/3
n L̃∗n(t)

)
dt
≤ ess sup T(L̃∗n, c) + o(1) = ess sup T(G̃∗, c) + o(1).

Repeat the arguments to get a lower bound equal to ess inf T(G̃∗, c) + o(1). The stated result then

follows from the fact that limc↓0 ess inf T(G̃∗, c) = limc↓0 ess sup T(G̃∗, c) = argmaxt∈Γ̃ G̃∗(t) for

almost all sample paths by lemma 2.6 of Kim and Pollard (1990). 2

Lemma C.2. For Γ̃ as defined in lemma A.2 and any ε > 0,

lim
γ̃→∞

lim
n→∞

P

[∫
Γ̃c ‖tjπn(t)‖ exp

{
β4/3

n
(
S̃n(t) + Qn(t)

)}
dt∫

πn(t) exp
{

β4/3
n
(
S̃n(t) + Qn(t)

)}
dt

> ε

]
= o(1). (24)

Proof. We first work on the numerator in (24). For c > 0, let Zn(γ̃, c) = {t ∈ Γ̃c : πn(t) >

0 ∧ |S̃n(t)| ≤ c‖t‖2}. For t ∈ Zn(γ̃, c) we have by assumption C that for some fixed c∗ > 0,

supt:πn(t)>0 ‖t‖ ≤ c∗ 3
√

n such that using exp
(
−min(a, b)

)
≤ e−a + e−b, by lemma A.5,

exp
{

β4/3
n
(
S̃n(t) + Qn(t)

)}
≤ exp

{
β4/3

n (cc∗2 − cq)n2/3}+ exp
{

β4/3
n (c− λ−/4)‖t‖2},

which for sufficiently small c, some c∗∗ > 0 independent of γ̃, n, and sufficiently large n is bounded

by 2 exp
(
−β4/3

n c∗∗γ̃2). So for any 0 < c̄ < ∞, some finite C, and any ε > 0 (using P[E1] ≤

P[E1 ∩ E2] + P[E c
2 ]),

lim
γ̃→∞

lim
n→∞

P

[
exp(c̄β4/3

n )
∫

Γ̃c
‖tjπn(t)‖ exp

{
β4/3

n
(
S̃n(t) + Qn(t)

)}
dt > ε

]
≤ lim

γ̃→∞
lim

n→∞
I
[
2Cα

j
n exp

{
(c̄− c∗∗γ̃2)β4/3

n
}

> ε
]
+ lim

γ̃→∞
lim

n→∞
P
[
sup
t∈Γ̃c
|S̃n(t)|/‖t‖2 > c

]
= 0.

Finally the denominator in (24). If Z∗n (c̄) = {t : πn(t) > 0∧ S̃n(t) + Qn(t) > −c̄/2} then

lim
n→∞

P

[∫
πn(t) exp

{
β4/3

n
(
S̃n(t) + Qn(t)

)}
dt ≥ exp

(
−β4/3

n c̄
)]

≥ lim
n→∞

P

[
π
∫

Z∗n (c̄)
exp(−β4/3

n c̄/2)dt ≥ exp
(
−β4/3

n c̄
)]

≥ lim
n→∞

P
[
π exp

(
−c̄β4/3

n /2
)
µ
(
Z∗n (c̄)

)
≥ exp

(
−β4/3

n c̄
)]

= 1. 2

APPENDIX D. αn = o( 3
√

n)

Lemma D.1.
∫

πn(t) exp
(
Qn(t)

)
dt = π0CV + o(1).
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Proof. We have by lemma A.7,

∫
πn(t) exp

(
Qn(t)

)
dt− π0CV =

∫
Γn

πn(t) exp
(
Qn(t)

)
dt + o(1)

= CV

∫
Γn

πn(t)
(

exp
(

Rn(t)
)
− 1
)

φV(t)dt + CV

∫
Γn

(
πn(t)− π0

)
φV(t)dt

− CVπ0

∫
Γc

n

φV(t)dt + o(1). (25)

The third right hand side term in (25) vanishes because γn increases to ∞, the first term is o(1) by

lemma A.8, and the second term is o(1) by the continuity of π at θ0. 2

Lemma D.2. Let µin =
√

αn/n
∫

tg̃i(θ0 + t/αn)φV(t)dt, such that {µin} is an independent mean zero

array. Then ∑n
i=1 E‖µin‖2+ι = o(1) for ι defined in assumption E.

Proof. We have for ι∗ defined in assumption E,

n

∑
i=1

E‖µin‖2+ι ≤ α1−ι−ι∗
n

(α3
n

n

)ι/2 ∫
‖t‖2+ιαι∗

n E
∣∣g̃i(θ0 + t/αn)

∣∣2+ι
φV(t)dt = o(1)O(1)O(1) = o(1),

by assumption E. 2

Lemma D.3. Let VN = π2
0
s

tsᵀH(t, s)φV(t)φV(s)dtds. Then
∫

πn(t)tS̃n(t)φV(t)dt d→ N(0, VN).

Proof. By lemma A.1,
∫ (

πn(t)− π0
)
tS̃n(t)φV(t)dt = op(1). Further,

π0

∫
tS̃n(t)φV(t)dt = n−1/2

n

∑
i=1

π0
√

αn

∫
tg̃i(θ0 + t/αn)φV(t)dt d→ N(0, VN),

by Lindeberg’s theorem (see e.g. theorem 23.6 of Davidson, 1994); the Lindeberg condition is satisfied

by lemma D.2. 2

Lemma D.4.
∫
‖πn(t)tS̃n(t)‖

(
exp

(
Rn(t)

)
− 1
)

φV(t)dt = op(1).

Proof. For
∫

Γc
n
, use lemma A.7 and for

∫
Γn

follow the same steps as in the proof of lemma B.1. 2

Lemma D.5. For any j = 0, 1,
∫
‖t‖j|πn(t)| exp

(
|βnS̃n(t)|+ Qn(t)

)
dt = Op(1).

Proof. Define S∗n = supt∈Γn

(
|S̃n(t)| − tᵀVt/4

)
. For

∫
Γc

n
the stated result follows from lemma A.7. So

we only need to deal with∫
Γn
‖t‖j|πn(t)| exp

(
|βnS̃n(t)|+ Qn(t)

)
dt ≤ exp(βnS∗n)

∫
Γn
‖t‖j|πn(t)| exp

(
βntᵀVt/4 + Qn(t)

)
dt.

Since lim‖t‖↓0
(
Qn(t)/tᵀVt

)
= −1/2, it follows that for sufficiently large n, Qn(t) ≤ −tᵀVt/4 for all

t ∈ Γn. Because βn = o(1) and S∗n = Op(1) by lemma A.3, the stated result follows. 2
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Lemma D.6. For j = 0, 1,
∫

πn(t)tj{exp
(

βnS̃n(t)
)
−∑

j
s=0
(

βnS̃n(t)
)s} exp

(
Qn(t)

)
dt = Op

(
β

j+1
n
)
.

Proof. Apply lemma A.6 with c = βn and b = S̃n(t), followed by lemma D.5. 2

Lemma D.7. Nn −Bn
d→ N(0, C2

VVN).

Proof. Use t = αn(θ − θ0) to obtain

Nn −Bn =
1

βn

∫
πn(t)t

{
exp

(
βnS̃n(t)

)
− 1
}

exp
(
Qn(t)

)
dt =∫

πn(t)tS̃n(t) exp
(
Qn(t)

)
dt +

1
βn

∫
πn(t)t

(
exp

(
βnS̃n(t)

)
− 1− βnS̃n(t)

)
exp

(
Qn(t)

)
dt. (26)

The first right hand side term in (26) converges in distribution to the stated normal by lemmas D.3

and D.4. The last term in (26) is Op(βn) = op(1) by lemma D.6. 2

Lemma D.8. Dn = π0CV + op(1).

Proof. Use t = αn(θ − θ0) to obtain

Dn =
∫

πn(t) exp
(

βnS̃n(t) + Qn(t)
)
dt

=
∫

πn(t) exp
(
Qn(t)

)
dt +

∫
πn(t)

(
exp

(
βnS̃n(t)

)
− 1
)

exp
(
Qn(t)

)
dt. (27)

The first right hand side term in (27) is π0CV + op(1) by lemma D.1. The last term in (27) is op(1) by

lemma D.6. 2

APPENDIX E. BIAS

E.1. Bias Expansion. In this subsection, the assumptions of theorem 5 are used.

Lemma E.1. For some finite CR, supt∈Γn
|Rn(t)| ≤ CRγ3

n/αn = o(1).

Proof. Because Q is three times continuously differentiable at θ0,

sup
t∈Γn

|Rn(t)| ≤ γ2
n sup
‖θ−θ0‖≤γn/αn

∥∥Q′′(θ) + V
∥∥/2 ≤ CRγ3

n/αn,

which is o(1) by the definition of γn.

Lemma E.2. ∫
Γn

πn(t)t
(

exp
(

Rn(t)
)
−

q

∑
p=0

(
Rn(t)

)p

p!

)
φV(t)dt = O

(
(γ3

n/αn)q+1).
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Proof. The length of the left hand side is by lemma A.6 for s∗n = supt∈Γn
|Rn(t)| equal to∥∥∥∥ ∞

∑
p=q+1

∫
Γn

πn(t)t

(
Rn(t)

)p

p!
φV(t)dt

∥∥∥∥ ≤ (s∗n)q+1 exp(s∗n)
∫

Γn
‖πn(t)t‖φV(t)dt = O

(
(s∗n)q+1).

Apply lemma E.1. 2

Let Mpq be the collection of q–vectors m of nonnegative integers for which ∑
q
`=1 m` = p. Let further

M ∗
pqr =

{
m ∈Mpq : ∑

q
`=1 `m` = r

}
, let DQδ(t) be the δ–th term in a Taylor expansion of Q(θ0 + t)

about Q(θ0) and let Dπδ(t) be likewise for π, e.g. DQ2(t) = tᵀQ′′(θ0)t/2. Finally, let D∗Qδn(t) be

αδ
n times the remainder term in a δ–th order Taylor expansion of Q(θ0 + t/αn) about Q(θ0) and let

D∗πδn(t) be likewise for π.

Lemma E.3. For any vector a ∈ <q,
(
∑

q
`=1 a`

)p/p! = ∑m∈Mpq ∏
q
`=1 am`

` /m`!.

Proof. This is a restatement of the multinomial theorem. 2

E.2. Bias Correction. In this section the assumptions of theorem 7 are used; r∗, ρn are as defined

in assumption I, take π, π̂ to equal πJ , π̂J , let π̂0 = π̂(θ0), and π̂n(t) = π̂(θ0 + t/αn). Let further

v(θ) = vec
{(
−Q′′(θ)

)−1} and v̂(θ) = vec
{(
−Q̂′′(θ)

)−1}.

Lemma E.4. (i) π̂0 = π0 + op(α−r∗
n ) and (ii) sup‖θ−θ0‖≤ρn

‖π̂′(θ)− π′(θ)‖ = op(α−r∗
n ).

Proof. Part (i) is implied by assumptions I and D (det(V) > 0). For (ii), note that

π′(θ) = −π(θ)Q′′′(θ)v(θ)/2, (28)

in a neighborhood of θ0. Hence in such a neighborhood,

2
(
π̂′(θ)− π′(θ)

)
= −(π̂0 − π0)Q̂′′′(θ)v̂(θ)− π0

{
Q̂′′′(θ)v̂(θ)−Q′′′(θ)v(θ)

}
.

Apply part (i) and assumption I. 2

Lemma E.5. b∗q1 =
∫ (

π0DQ3(t) + Dπ1(t)
)
tφV(t)dt = 0.
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Proof. Let V j` denote the (j, `) element of V−1 and let Kps` = ∂θpθsθ`
Q(θ0). Then the j–th element of

b∗q1 is equal to

π0

6

d

∑
p,s,`=1

Kps`

∫
tptst`tjφV(t)dt +

d

∑
`=1

∂θ`
π(θ0)

∫
t`tjφV(t)dt

=
π0

6

( d

∑
p,s,`=1

Kps`(VpsV j` + Vp`Vsj + VpjVs`)− 3
d

∑
p,s,`=1

Kps`VpsV j`
)

= 0,

where the first equality follows from (28). 2

Lemma E.6.
∫ (

αn + DQ3(t)
)
π̂n(t)tφV(t)dt = op(α−r∗

n ).

Proof. The left hand side in the lemma statement is by the mean value theorem for some t∗ between

zero and t equal to∫
ttᵀπ̂′n(t)φV(t)dt + π̂0

∫
DQ3(t)tφV(t)dt + α−1

n

∫
ttᵀπ̂′n(t∗)DQ3(t)φV(t)dt,

which by lemma E.5 is equal to

∫
ttᵀ
(
π̂′n(t)− π′0

)
φV(t)dt + (π̂0 − π0)

∫
DQ3(t)tφV(t)dt

+ α−1
n

∫
ttᵀ
(
π̂′n(t∗)− π′0

)
DQ3(t)φV(t)dt + α−1

n

∫
Dπ1(t)DQ3(t)tφV(t)dt,

whose first three terms are op(α−r∗
n ) by lemma E.4, dominated convergence, and assumption C, and

whose last term is zero because of the symmetry of the normal distribution. 2

APPENDIX F. UNIFORM INFERENCE

The results in appendix F presume that the assumptions of theorem 8 are satisfied.

Lemma F.1. Ĝ
w→ G in L ∞(T1, T2, . . .).

Proof. For any fixed and distinct t1, . . . , tj, we can write
Ĝ(t1)

...

Ĝ(tj)

 = Ω̂1/2(t1, . . . , tj)η,
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with η ∼ N(0, Ij) and Ω̂(t1, . . . , tj) ∈ <j×j with (`, p)–element Ĥ(t`, tp). Let Ω be as Ω̂ with Ĥ

replaced by H. Since Ĥ is a consistent estimator of H,

Ω̂1/2(t1, . . . , tj)η = Ω1/2(t1, . . . , tj)η + op(1) ∼ N
(
0, Ω(t1, . . . , tj)

)
+ op(1),

which is the joint distribution of G(t1), . . . , G(tj). The stated result then follows from the fact that Ĝ

is tight. 2

Lemma F.2. For any c = [c1, c2]
ᵀ with 0 < c1, c2 < ∞, Let ˆ̃G(t; c) = c1Ĝ(t)− c2tᵀV̂ t/2 and G̃(t; c) =

c1G(t)− c2tᵀVt/2. Then ˆ̃G(·; c) w→ G̃(·; c) in L ∞(T1, T2, . . .)..

Proof. Follows from lemma F.1 combined with the consistency of V̂ . 2

Lemma F.3. For c as in lemma F.2 and any vector–valued function ψ for which for some cψ < ∞,

supt ‖ψ(t)‖/(‖t‖cψ + 1) < ∞,∫
ψ(t) exp

(
c1Ĝ(t)− c2tᵀV̂ t/2

)
dt d→

∫
ψ(t) exp

(
c1G(t)− c2tᵀVt/2

)
dt.

Proof. By lemma F.2 and the Skorokhod representation theorem (Billingsley, 1999, theorem 6.7),

there exist ˆ̃G∗, G̃∗, such that ˆ̃G∗, G̃∗ have the same properties as ˆ̃G, G̃ and such that for all ω:
ˆ̃G∗(·; ω) → G̃∗∗(·; ω). Since ‖ψ(t)‖ exp

(
c1Ĝ(t)− c2tᵀV̂ t/2

)
is a.s. integrable by the assumptions

on Ĥ, ψ, the stated result then follows from the dominated convergence theorem (Billingsley, 1995,

theorem 16.4). 2

Lemma F.4. If 1 = o(βn) then∫
t exp

(
β4/3

n (Ĝ(t)− tᵀV̂ t/2)
)
dt/

∫
exp

(
β4/3

n (Ĝ(t)− tᵀV̂ t/2)
)
dt d→ argmax

t∈<d
G̃(t).

Proof. Let ψ̂j(t) = tj exp
(

β4/3
n (Ĝ(t) − tᵀV̂ t/2)

)
and ψj(t) = tj exp

(
β4/3

n (G(t) − tᵀVt/2)
)
. Then

ψ̂0, ψ̂1, ψ0, ψ1 ∈ L(<d, B, µ) and
(
ψ̂0, ψ̂1

) w→ (ψ0, ψ1). Repeat the arguments of lemma C.1 following

(20). 2

Lemma F.5. If βn = o(1) then

1

β
j
n

∫
tj exp

(
β3/2

n Ĝ(t/βn)
)
φV̂ (t)dt = op(1) +

1, j = 0,√
βn
∫

tĜ(t/βn)φV̂ (t)dt, j = 1.
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Proof. We show the stated result for j = 1; the case j = 0 is similar. By lemma A.6, we have∥∥∥∥β−1
n

∫
t exp

(
β3/2

n Ĝ(t/βn)
)
φV̂ (t)dt−

√
βn

∫
tĜ(t/βn)φV̂ (t)dt

∥∥∥∥
≤ βnC−1

V

∫
‖t‖ exp

(√
βn|Ĝ(t/βn)| − tᵀV̂ t/2

)
dt,

which has the same distribution as βnC−1
V
∫
‖t‖ exp

(
|Ĝ(t)| − tᵀV̂ t/2

)
dt = Op(βn) = op(1). 2

Lemma F.6. If βn = o(1) then

√
βn

∫
tĜ(t/βn)φV̂ (t)dt d→ N(0, V ). (29)

Proof. The left hand side in (29) has the same distribution as
∫

tĜ(t)φV̂ (t)dt, which by lemma F.1,

the assumption that V̂ = V + op(1), and the conditions on Ĥ, converges in distribution to∫
tG(t)φV(t)dt, (30)

Because S̃n
w→ G, (30) is also the limit of

∫
tS̃n(t)φV(t)dt, which lemma D.3 established to have a

limiting N(0, V ) distribution. 2

APPENDIX G. RESULTS SPECIFIC TO THE MAXIMUM SCORE CASE

G.1. V, H, V .

Lemma G.1. V = −2E
[
ziz

ᵀ
i pa(zᵀ

i θ0, zi) f (zᵀ
i θ0|zi)

]
.

Proof. Let ∂θ denote a partial derivative with respect to θ. In view of the definition of V, consider

∂θθᵀEgi(θ) = ∂θθᵀE
[(

2p(ai, zi)− 1
)

I(ai ≤ zᵀ
i θ)
]

= ∂θθᵀE

[∫ zᵀ
i θ

−∞

(
2p(a, zi)− 1

)
f (a|zi)da

]
= ∂θᵀE

[
zi
(
2p(zᵀ

i θ, zi)− 1
)

f (zᵀ
i θ|zi)

]
= E

[
ziz

ᵀ
i
{

2pa(zᵀ
i θ, zi) f (zᵀ

i θ|zi) +
(
2p(zᵀ

i θ, zi)− 1
)

f ′(zᵀ
i θ|zi)

}]
,

which at θ0 equals 2E
[
ziz

ᵀ
i pa(zᵀ

i θ0, zi) f (zᵀ
i θ0|zi)

]
= −V. 2

Lemma G.2. If ui is the error term in the latent variable equation of Manski (1975) and Manski’s conditional

median assumption is satisfied, then V = 2E
[
ziz

ᵀ
i fua|z(0, zᵀ

i θ0|zi)
]
.

Proof. Note first that p(a, z) = 1− Fu|az(a− zᵀθ0|a, z), whose partial derivative with respect to a for

a = zᵀθ0, z = z is fu|az(0|zᵀθ0, z) since Fu|az(0|a, z) = 1/2 for all values of a, z by the conditional

median assumption. 2
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Lemma G.3. H(t, s) = E
[∣∣M(zᵀ

i t, zᵀ
i s, 0)

∣∣ f (zᵀ
i θ0|zi)

]
.

Proof. Let

H (t, s) = lim
α→∞

E

[
α
∫ zᵀ

i θ0+min(zᵀ
i t,zᵀ

i s)/α

zᵀ
i θ0

f (a|zi)da

]
= E

[
min(zᵀ

i t, zᵀ
i s) f (zᵀ

i θ0|zi)
]
.

by the dominated convergence theorem. Thus, noting that (2yi − 1)2 = 1, we have

H(t, s) = H (t, s)−H (t, 0)−H (0, s) + H (0, 0)

= E
[{

min(zᵀ
i t, zᵀ

i s)−min(zᵀ
i t, 0)−min(zᵀ

i s, 0)
}

f (zᵀ
i θ0|zi)

]
= E

[∣∣M(zᵀ
i t, zᵀ

i s, 0)
∣∣ f (zᵀ

i θ0|zi)
]
.

2

Lemma G.4. If for some  = 1, . . . , d, P[zi = 0] = 0, then (11) holds.

Proof. We first establish the following five results for a generic variance matrix Σ ∈ <d×d, where Σ`j

denotes the 2× 2 submatrix of Σ containing σ``, σ`j, σj`, σjj with σ`j the (`, j) element of Σ.∫ ∞

t1

∫
sjφΣ−1

1j
(s1, sj)dsjds1 = σ1jφ(t1/σ1)/σ1, (31)∫ ∞

t1

s1φ(s1/σ1)ds1/σ1 = σ1φ(t1/σ1), (32)

y ∫ ∞

t1

t`t1sjφΣ−1
1j

(s1, sj)φΣ−1
1`

(t1, t`)ds1dsjdt1dt` = σ1jσ1`/4σ1
√

π, (33)
x

t`sj min(t1, s1)φΣ−1(s)φΣ−1(t)dsdt = σ1jσ1`/2σ1
√

π, (34)
x

tsᵀ min(t1, s1)φΣ−1(s)φΣ−1(t)dsdt = Σe1eᵀ
1 Σ/2

√
πeᵀ

1 Σe1, (35)

where e1 is the first unit vector. The left hand side in (31) is

σ1j

σ3
1

∫ ∞

t1

s1φ(s1/σ1)ds1 = −
σ1j

σ1

∫ ∞

t1/σ1

φ′(s1)ds1 =
σ1j

σ1
φ(t1/σ1).

Equality (32) is similar, but easier to establish, and the left hand side in (33) is by (31) equal to

σ1j

σ1

x
t`t1φ(t1/σ1)φΣ−1

1`
(t1, t`)dt`dt1 =

σ1jσ1`

σ4
1

∫
t2
1φ2(t1/σ1)dt1 =

σ1jσ1`√
23σ1

∫
t2
1φ2(t1/

√
2)dt1

=
σ1jσ1`

4σ1
√

π
.

Equality (34) then follows by applying (33) twice and (35) by repeatedly using (34).
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Now suppose without loss of generality that  = 1 and denote the remaining elements by z̃i. Let

further

Ai =

zi1 z̃ᵀ
i

0 Id−1

 , Vi = (Aᵀ
i )−1VA−1

i , fi = f (zᵀ
i θ0|zi).

Then by substitution of t̃ = Ait and s̃ = Ais,

V =
x

tsᵀH(t, s)φV(t)φV(s)dtds = E
[

fi

x
tsᵀ|M(zᵀ

i t, zᵀ
i s, 0)|φV(t)φV(s)dtds

]
= E

[
fi A−1

i

x
t̃s̃ᵀ|M(t̃1, s̃1, 0)|φVi (t)φVi (s)dt̃ds̃

(
Aᵀ

i
)−1
]

= E
[

fi A−1
i

x
t̃s̃ᵀ min(t̃1, s̃1)φVi (t̃)φVi (s̃)dt̃ds̃

(
Aᵀ

i
)−1
]

=
1

2
√

π
E

 fi
A−1

i V−1
i e1eᵀ

1 V−1
i
(

Aᵀ
i
)−1√

eᵀ
1 V−1

i e1


=

1
2
√

π
V−1E

 ziz
ᵀ
i√

zᵀ
i V−1zi

f (zᵀ
i θ0|zi)

V−1,

where the penultimate inequality follows from (35) and the last from the fact that A−1
i V−1

i = V−1 Aᵀ
i

and that Aᵀ
i e1 = zi. 2

G.2. Weak Convergence. In this section, we show that assumption G is satisfied in the maximum

score case. In view of equation (1), part i is satisfied. Let I (A ) be the Vapnik–C̆ernovenkis (VC̆)

index of a function class A . Let T ⊂ <d be an arbitrary compact set.

Lemma G.5. Let υ̃n(ξ, t) = I
(
zᵀ(θ0 + t/α̃n) ≥ a

)
and F̃n = {υ̃n(·; t)}t∈T and every n, I (F̃n) ≤

d + 3.

Proof. Since F̃n is a collection of indicator functions, its VC̆ index is equal to the VC̆ index of the

collection of sets {(z, a) : zᵀ(θ0 + t/α̃n) ≥ a} with t ranging over T . For every n, this collection is a

subcollection of the sets {(z, a) : zᵀt + as ≥ 0} with (t, s) ranging over <d+1. The VC̆ index of the

latter collection of sets is equal to d + 3 by Kosorok (2008, lemma 9.12). 2

Lemma G.6. For all n, I (Fn) ≤ 2d + 5.

Proof. Note that for every element υ ∈ Fn there is an element υ̃n ∈ F̃n such that υn(ξ) =
√

α̃n(2y−

1)
(
υ̃n(ξ)− I(zᵀθ0 ≥ a)

)
. Therefore, I (Fn) is bounded by 2I (F̃n)− 1 by Kosorok (2008, lemma

9.9). The conclusion then follows from lemma G.5. 2

Let tn(z) = arginft∈T zᵀ(θ0 + t/α̃n) and sn(z) = argsupt∈T zᵀ(θ0 + t/α̃n) and note that Fn

defined in assumption G is Fn(ξ) =
√

α̃n I
{

zᵀ(θ0 + tn(z)/α̃n
)

< a ≤ zᵀ(θ0 + sn(z)/α̃n
)}

.
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Lemma G.7. EF2
ni = O(1).

Proof. By the law of iterated expectations,

EF2
ni = α̃nE

[
P
[
zᵀ

i
(
θ0 + tn(zi)/α̃n

)
< ai ≤ zᵀ

i
(
θ0 + sn(zi)/α̃n

)∣∣zi
]]

≤ E
[
sup

s
fa|z(s|zi)‖zi‖‖tn(zi) + sn(zi)‖

]
.

The stated result then follows from tn(zi), sn(zi) ∈ T and E[sups fa|z(s|zi)‖zi‖] < ∞. 2

Lemma G.8. For all ε > 0, E
[
F2

ni I
(

Fni > ε
√

n
)]

= o(1).

Proof. Follows from n/α̃n → ∞. 2

Lemma G.9. For every εn ↓ 0, sup‖s−t‖<εn
E
[
α̃n
(

gi(θ0 + t/α̃n)− gi(θ0 + s/α̃n)
)2] = o(1).

Proof. Follows from

E
[
α̃n
(

gi(θ0 + t/α̃n)− gi(θ0 + s/α̃n)
)2] ≤ α̃nE

[
P[zᵀ

i (θ0 + t/α̃n) < ai ≤ zᵀ
i (θ0 + s/α̃n)|zi]

]
+ α̃nE

[
P[zᵀ

i (θ0 + s/α̃n) < ai ≤ zᵀ
i (θ0 + t/α̃n)|zi]

]
≤ 2E

[
sup

s
fa|z(s|zi)‖zi‖

]
‖t− s‖. 2

Lemma G.10. S̃n
w→ G in L ∞(T1, T2, . . .), where G is a Gaussian process with covariance kernel H such

that H(t, t) = O(‖t‖) as ‖t‖ → ∞.

Proof. Recall that

α̃nE
[
gi(θ0 + t/α̃n)gi(θ0 + s/α̃n)

]
→ H(s, t) = E

[
f (zᵀ

i θ0|ai)|M(zᵀ
i t, zᵀ

i s, 0)|
]

.

By lemmas G.8–G.9 and theorem A.1, showing that part v holds will complete the proof. Note

however that by lemma G.6 each Fn is a VC̆ class of which the VC̆ index is bounded by 2d + 5.

Therefore, for 0 < ε < 1,

N
(
ε‖F‖Q,2, Fn, L2(Q)

)
≤ Cε2−2(2d+5)

for some constant C that only depends on d; see e.g. van der Vaart and Wellner (1996, theorem 2.6.7).

Hence, part v of assumption G is satisfied, and the conclusion follows. 2

APPENDIX H. PROOFS OF THEOREMS

Please note that the proofs use some additional notation that was introduced in appendix A.1.

Proof of Theorem 1. See lemma A.1. 2
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Proof of Theorem 2. See lemma G.10. 2

Proof of Theorem 3. First (i). Note that by substitution of t = αn(θ − θ0) we get

√
n
αn

(θ̂− θ0) =
√

n
αn

∫
π(θ)(θ − θ0) exp

{
α2

n
(
Sn(θ) + Q(θ)

)}
dθ∫

π(θ) exp
{

α2
n
(
Sn(θ) + Q(θ)

)}
dθ

=
√

n
α3

n

∫
πn(t)t exp

(
c3

αS̃n(t) + Qn(t)
)
dt∫

πn(t) exp
(
c3

αS̃n(t) + Qn(t)
)
dt

=
1
c3

α

∫
t exp

(
c3

αS̃n(t)
)
φV(t)dt∫

exp
(
c3

αS̃n(t)
)
φV(t)dt

+ op(1),

by lemma B.2. Multiply both sides by cα, then apply lemma A.1 and the continuous mapping

theorem.

Now (ii). By substitution of t = 3
√

n(θ − θ0) we get

3
√

n(θ̂− θ0) =

∫
πn(t)t exp

{
β4/3

n
(
S̃n(t) + Qn(t)

)}
dt∫

πn(t) exp
{

β4/3
n
(
S̃n(t) + Qn(t)

)}
dt

=
N

D
,

Now, for Γ̃ = {t : ‖t‖ ≤ γ̃} for finite positive γ̃. Let further NΓ̃ =
∫

Γ̃ πn(t)t exp{· · · }dt,

NΓ̃c =
∫

Γ̃c πn(t)t exp{· · · }dt, DΓ̃ =
∫

Γ̃ πn(t) exp{· · · }dt, DΓ̃c =
∫

Γ̃c πn(t) exp{· · · }dt. Simple

manipulations show that
N

D
=

NΓ̃

DΓ̃

(
1− DΓ̃c

D

)
+

NΓ̃c

D
.

By lemma C.2 both DΓ̃c /D and NΓ̃c /D are op(1) and by lemma C.1, NΓ̃/DΓ̃
d→ argmaxt∈Γ̃ G̃(t) for

any γ̃ > 0. Let γ̃→ ∞. 2

Proof of Theorem 4. Combine lemmas D.7 and D.8. 2

Proof of Theorem 5. For M ∗
pqr defined as in appendix E. By lemmas A.7 and E.2, the difference

between Bn and

B∗n =
CV
βn

q

∑
p=0

1
p!

∫
πn(t)t

(
Rn(t)

)p
φV(t)dt, (36)

is o(α
−q
n β−1

n ). We employ the Taylor expansions

Rn(t) =
q

∑
δ=1

DQ,δ+2(t)
αδ

n
+

D∗Q∆n(t)

α
q
n

, πn(t) =
q

∑
`=0

Dπ`(t)
α`

n
+

D∗πqn(t)

α
q
n

. (37)

Note that supt∈Γn\{0}
(
|D∗Q∆n(t)|/‖t‖∆ + |D∗πqn(t)|/‖t‖q) = o(1) by the continuity of the ∆–th

derivative of Q and the q–th derivative of π at θ0, and the fact that γn = o(αn). Hence, by lemmas

A.7 and A.9 it follows that any expressions in an expansion of (36) using (37) involving the remainder

terms in the Taylor expansions of (37) are o
(
α
−q
n β−1

n
)
.
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Omitting the remainder terms in the definition of B∗n yields

B∗∗n =
CV
βn

q

∑
p=0

1
p!

∫ ( q

∑
`=0

Dπ`(t)
α`

n

)( q

∑
δ=1

DQ,δ+2(t)
αδ

n

)p

tφV(t)dt.

Using lemma E.3, we obtain

B∗∗n =
CV
βn

q

∑
p=0

∫ ( q

∑
`=0

Dπ`(t)
α`

n

)
∑
Mpq

q

∏
δ=1

{(
DQ,δ+2(t)

αδ
n

)mδ 1
mδ!

}
tφV(t)dt

=
CV
βn

q

∑
p=0

∑
Mpq

q

∑
`=0

1

α
`+∑

q
δ=1 mδδ

n

∫
Dπ`(t)

( q

∏
δ=1

Dmδ
Q,δ+2(t)

mδ!

)
tφV(t)dt

=
CV
βn

q

∑
`=0

q−`

∑
r=0

bqr`

αr+`
n

+ O
(
α
−q−1
n

)
=

1
βn

q

∑
τ=0

b∗qτ

ατ
n

+ o
(
α
−q
n β−1

n
)
,

where

bqr` =
q

∑
p=0

∑
M ∗

pqr

∫
Dπ`(t)

( q

∏
δ=1

Dmδ
Q,δ+2(t)

mδ!

)
tφV(t)dt,

and b∗qτ = CV ∑τ
r=0 bqr,τ−r Finally, b∗qτ = 0 for even–valued τ because bqr` = 0 whenever r and ` add

up to an even number. Indeed, then there is at least one ts taken to an odd power in (H), whose

integral with respect to the normal density equals zero. 2

Proof of Theorem 6. Given theorems 4 and 5, we only need to show that (i) b∗q0 = 0 and (ii) b∗q1 =

CV
∫ (

π0DQ3(t) + Dπ1(t)
)
tφV(t)dt. Both results follow from the definition of b∗qτ in the proof of

theorem 5. 2

Proof of Theorem 7. Let NJn, DJn, BJn, B∗Jn be defined as Nn, Dn, Bn, B∗n with π̂ = π̂J and π̂n =

π̂(θ0 + t/αn) replacing π, πn. By lemma E.4 we have NJn −BJn
d→ N(0, C2

VVN), DJn = π0CV +

op(1), following the same steps as in lemmas D.7 and D.8. It therefore suffices to consider BJn.

The first few lines of the proof of theorem 5 establish that the difference between Bn and B∗n is

o(α
−q
n β−1

n ). The argument there and those in lemmas A.7 and E.2 used therein do not depend on π

being nonrandom, so BJn −B∗Jn = op(α
−q
n β−1

n ).

Expanding Rn(t) and ignoring the remainder term like in the proof of theorem 5, we get

B∗Jn =
CV
βn

q

∑
p=0

∫
π̂n(t)

( q

∑
δ=1

DQ,δ+2(t)
αδ

n

)p

tφV(t)dt + op(α
−q
n β−1

n ). (38)
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Part (i) of the theorem then follows by applying lemma E.6 to the first right hand side term in (38).

For (ii) the first right hand side term in (38) equals

CV

α3
nβn

∫
π̂n(t)

(
DQ5(t) + DQ3(t)DQ4(t)/2 + D3

Q3(t)/6
)
tφV(t)dt

+
CV

α2
nβn

∫
π̂n(t)

(
DQ4(t) + D2

Q3(t)
)
tφV(t)dt. (39)

By lemma E.4 the first term in (39) is

CVπ0

α3
nβn

∫ (
DQ5(t) + DQ3(t)DQ4(t)/2 + D3

Q3(t)/6
)
tφV(t)dt + op(α−3

n β−1
n ) = Op(α−3

n β−1
n ). (40)

Using the same arguments as in the proof of theorem 5 about the remainder terms in an expansion

of the prior, the second term in (39) is

CVπ0

α2
nβn

∫ (
DQ4(t) + D2

Q3(t)
)
tφV(t)dt +

CV

α3
nβn

∫ (
DQ4(t) + D2

Q3(t)
)
φV(t)ttᵀdt π′(θ0)

+ op(α−3
n βn). (41)

The first term in (41) is zero because the normal distribution is even. The second term in (40) is

O(α−3
n β−1

n ), so part (ii) of the theorem is satisfied with BJ equal to the sum of the first term in (40)

and the second term in (41). 2

Proof of Theorem 8. First part (ii). If cα ≥ 1, then κn = 3
√

n and by lemma F.3,

Ψn =
∫

t exp
(
c4

αĜ(t)− c4
αtᵀV̂ t/2

)
dt/

∫
exp

(
c4

αĜ(t)− c4
αtᵀV̂ t/2

)
dt

has the limiting distribution given in (8). For cα < 1, we have likewise κn = 3
√

n/cα and

cαΨn
d→ cα

∫
t exp

(
c9/2

α G(t)− c6
αtᵀVt/2

)
dt∫

exp
(
c9/2

α G(t)− c6
αtᵀVt/2

)
dt

=
1
c2

α

∫
t exp

(
c9/2

α G(t/c3
α)
)
φV(t)dt∫

exp
(
c9/2

α G(t/c3
α)
)
φV(t)dt

, (42)

by substitution of t̃ = c3
αt and replacing t̃ with t. The right hand side in (42) has the same distribution

as the limit distribution in (6) since c9/2
α G(·/c3

α) has the same properties as c3
αG(·).

Part (iii) is established in lemma F.4.

Finally, part (i). By substitution of t̃ = βnt and replacing t̃ by t we obtain

Ψn =
1

βn

∫
t exp

(
β3/2

n Ĝ(t/βn)
)
φV̂ (t)dt∫

exp
(

β3/2
n Ĝ(t/βn)

)
φV̂ (t)dt

.

Apply lemma F.5 followed by lemma F.6. 2
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APPENDIX I. COMPUTATION

I.1. Maximum Score. We now describe the algorithm used to compute our estimates for the maxi-

mum score case. A computer program written in C is available upon request.

Let θ−j, zi,−j be respectively θ, zi without its j–th element. Let Bij = Bij(θ−j) = (ai− zᵀ
i,−jθ−j)/zij

if zij 6= 0 and be arbitrarily defined if zij = 0. Let further Snj(θj) = ∑n
i=1(2yi − 1)

(
I(zij > 0)I(θj ≥

Bij) + I(zij < 0)I(θj ≤ Bij)
)
/ 3
√

n. Let I(θj|θ−j) =
∫ θj
−∞ πj(θj|θ−j) exp

(
Snj(θj)

)
dθj.

(1) Compute and renormalize probit estimates.

(2) Set j = 1.

(3) Compute Bij for all i for which zij 6= 0 and sort all n∗ of them in ascending order, i.e.

B1j ≤ B2j ≤ . . . ≤ Bn∗ j.

(4) Compute Snj(−∞).

(5) Note that for all θj ≤ B1j, Inj(θj) = exp
(
Snj(−∞)

)
Πj(θj|θ−j), where Πj(θj|θ−j) is the

integrated conditional prior.

(6) For all θj ∈ (B1j, B2j], Inj(θj) = Inj(B1j)+ exp
{

Snj
(
(B1j + B2j)/2

)}(
Πj(θj|θ−j)−Πj(B1j|θ−j)

)
.

(7) Repeat this process until Inj(θj) is determined for all values of θj.

(8) Set I ∗nj(θj) = Inj(θj)/Inj(∞), which is a distribution function.

(9) Draw a random number r from a uniform distribution.

(10) Compute i∗ = max{i : I ∗nj(Bij) ≤ r}.

(11) Set θj = θj(r) = Π−1(Π(Bi∗ j) + Inj(∞)r + Inj(Bij)|θ−j
)
.

(12) Increase j. If j > d set j = 1. Go to step 3.

(13) Repeat for a large number of times to burn in.

(14) Then start using them as actual draws.

I.2. Inference. We now describe how one can draw J random numbers with the same distribution

as (17). Suppose that consistent estimates V̂ , Ĥ are available, where Ĥ is moreover a positive semi-

definite covariance kernel.21 One can then draw random numbers t1, . . . , tT∗ from the multivariate

normal (φβn2V̂ ) and define

ζ̂ j =
∑T∗

s=1 ts exp(βn1Gjs)

∑T∗
s=1 exp(βn1Gjs)

, (43)

where Gj1, . . . , GjT∗ are drawn independently across j and have for all given j = 1, . . . , J a joint

normal distribution with Cov[Gjs, Gjs∗ ] = Ĥ(ts, ts∗), for all s, s∗. In the limit (n and T∗), each ζ̂ j has

21In practice one only needs to ensure that the T∗ × T∗ matrix with (i, j)–element Ĥ(ti , tj) is positive semidefinite.
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the same distribution as Ψn defined in (17). Note that the ts draws are made only once. The draws

ζ̂1, . . . , ζ̂J can then be used to construct confidence intervals.

I.3. Derivatives of Q. For the maximum score case, Q(θ) = E
[
(2yi − 1)

(
I(ai ≤ zᵀ

i θ) − I(ai ≤

zᵀ
i θ0)

)]
. If derivatives of Q must be estimated, we recommend using the desired derivative of

Q̂′(θ) =
1

nb̃

n

∑
i=1

k̃
(

zᵀ
i θ − ai

b̃

)
(2yi − 1)zi,

where k̃ is a kernel and b̃ a bandwidth.
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