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1. MOTIVATION

We extend the Chernozhukov and Hong| (2003) Laplace estimation procedure to|Kim and Pollard
(1990)-type objective functions (e.g. the maximum score estimator (Manski} 1975). Scaling the non-
regular objective functions by a sample-size (1)-dependent input parameter a2, we establish that the
Laplace estimation procedure, given sufficient smoothness, can improve the {/n—convergence rate of
Kim and Pollard|(1990) to a rate arbitrarily close to y/n. We further show that the proposed estimator
has three different types of limiting distribution, depending on the rate at which «;, diverges. We
provide a simple-to—implement uniform inference method which yields (asymptotically) correct
inference irrespective of which of the three types applies. Generally, a slower rate of increase of «;,
translates to a faster convergence rate for our estimator 8, albeit that the convergence rate of 8 is
never worse than /7 and that to achieve faster than n%/5—convergence a bias—correction procedure
is needed. We provide two such procedures: the bias can be estimated and subtracted or one can use
a special ‘prior’ resembling Jeffreys( (1946) prior. Computation is straightforward and can typically
be accomplished using Gibbs sampling (Geman and Geman), 1984). A limited simulation study
yields encouraging results.

Chernozhukov and Hong| (2003) proposed integrating instead of optimizing the (exponential
of an) objective function of extremum estimators to obtain an estimator of an unknown parameter
vector 6p; they labelled their estimator a Laplace estimator. The objective in|Chernozhukov and Hong
(2003) is primarily to facilitate the computation of some difficult-to—compute estimators by using
the Markov Chain Monte Carlo (MCMC) method. Under the assumption that the objective function
of interest admits a classical quadratic expansion, Chernozhukov and Hong| (2003) showed that
their Laplace-type estimators are generally /n—consistent and have a limiting normal distribution.
One version of their estimator can be interpreted as the “posterior’ mean based on a “prior” and a
‘pseudo-likelihood,” where the latter is formed using the extremum estimator objective function
of interestﬂ Chernozhukov and Hong| (2003) derived conditions under which their estimator is
efficient and in which its limiting distribution coincides with the (pseudo) posterior distribution.

The results of Chernozhukov and Hong| (2003) do not extend to the class of estimators considered
by Kim and Pollard| (1990) because the Kim and Pollard objective functions do not admit the

quadratic expansion needed. Computation of this class of estimators and their confidence regions

1Despite the use of terminology which has a Bayesian ring to it, the Chernozhukov and Hongj (2003) procedure — and indeed
ours — is entirely classical.



can be cumbersome (see e.g. Manski and Thompson, [1986; [Pinkse, [1993; Florios and Skouras, 2008),
so a Laplace-type procedure would be valuable.

The extension of the Laplace—procedure to Kim and Pollard| (1990)-type objective functions is
not merely a generalization of the |(Chernozhukov and Hong| (2003) conditions. Indeed, whereas
for the class of estimators admitting the standard quadratic expansion, the estimator is always /n—
consistent and the limiting distribution is always normal regardless of the scaling of the objective
function, in the case studied in this paper both the convergence rate of our estimator and the nature
of the limiting distribution depend on the input parameter a2 that scales the objective function.

If &, diverges at a rate no slower than /7 then our estimator 8 is {/n—convergent. If a,, diverges
faster than ¢/n then 8 moreover has the same limiting distribution as the corresponding Kim and
Pollard|(1990) extremum estimator even though our estimator is always a singleton and the Kim|
and Pollard| (1990) estimator can be set-valued as in e.g. the case of the maximum score estimator.
When a,, increases at the rate of /7, the limiting distribution of  is characterized by the ratio of
two integrals of a certain Gaussian process. The third type of limiting distribution, namely the
normal, arises when w;, increases at a rate slower than {/n. Indeed, we show that subject to sufficient
smoothness the convergence rate of 6 can be as good as \/n/uay; since &, must increase to infinity
with 7, a convergence rate of /7 is not achievable. If a;, increases more slowly (i.e. no faster than
+/n) then asymptotic bias becomes an issue; the asymptotic bias is discussed further below.

This trichotomy of limiting distributions is interesting, but since in practice one only chooses a
value of w;, not a rate, deciding which limit distribution to use is problematic. So, we develop a
simple—to—execute simulation-based inference procedure which automatically adapts to the correct
limit distributionﬂ So inference is uniform in the choice of a; this result is at the heart of this paper.

Uniform inference procedures exist in numerous other environments, including weak identifi-
cation (Staiger and Stock) [1997), roots near unity (Mikusheval 2007), subsampling (Andrews and
Guggenberger), 2008), kernel estimation (Guerre and Lavergne} [2005), HAC estimation (Kiefer and
Vogelsang, |2005), and average derivative estimation (Cattaneo, Crump, and Jansson, 2008). Whereas
in[Staiger and Stock| (1997) uniformity is achieved in a nuisance parameter and in Mikusheva/(2007)
in the parameter of interest, here it is achieved in a sample-size-dependent input parameter «;,.
In contrast to e.g. Guerre and Lavergne (2005), in our case uniformity is in the rate of the input

parameter instead of a constant multiplying the rate. Like Mikusheva| (2007), but unlike e.g./Cattaneo,

2Directly using the quantiles of the pseudo—posterior to conduct inference does not appear to be feasible in our case, although
Chernozhukov and Hong|(2003) derived conditions under which this can be done in their, regular, case.



Crump, and Jansson|(2008), our limiting distributions differ not just in parameter values, but also in
type, and here there are three distinct types instead of two as in Mikusheva| (2007).

As we mentioned earlier, a slow rate of increase of &, (i.e. no faster than +/n) introduces an
asymptotic bias issue. We provide two methods for removing the asymptotic bias, namely to
subtract an estimate of the bias and to use a special prior. Indeed, we show that using the equivalent
of Jeffreys' (1946) prior in the current context, or an estimated version thereof, removes the n=2/5—~
order bias. This is the only instance that we are aware of in which the choice of prior matters in large
samples when there is point—identificationﬂ

For consistency, &, must increase to infinity with the sample size; for consistency the rate at which
«, increases is immaterial. If one were to let &, decrease to zero, however, then our estimator would
converge to the mean of the prior, which would also be true for the regular Chernozhukov and Hong
(2003) estimator. A consequence of this is that for small choices of a;,, the estimator is biased towards
the mean of the prior and that this type of bias cannot be corrected using asymptotic methods.
A similar issue arises in kernel regression estimation if one lets the bandwidth go to infinity. We
investigate both types of bias in our simulation study.

We illustrate our methodology using the maximum score estimator (Manski, 1975, MSE) as a
leading example. We emphasize the binary choice version of the MSE, albeit that the discussion
applies equally to the ordered response and multinomial choice cases (Lee} [1992; Manski, 1975).

The MSE is {/n—consistent for the vector of regression coefficients in a binary choice model using
little more than a conditional median restriction on the errors in the latent variable equation. In
particular, unlike other parametric estimators such as probit or logit, the error distribution need not
be specified. Unlike other semiparametric single-index models (e.g. Klein and Spady}[1993), the
error distribution need not be independent of the regressors, and heteroskedasticity of unknown
form is permitted. Despite this desirable generality, the MSE has not been especially popular because
of its computational difficulty, its slow convergence rate, and its nonstandard limiting distribution;
we are aware of only a few empirical uses of the MSE and its generalization, including |Bajari, Fox,
and Ryan| (2008); Bajari and Fox (2009); Fox| (2007} [2009).

Horowitz| (1992) has shown that by replacing the maximum score objective function with a
smoothed version thereof, a rate arbitrarily close to /7 is attainable with a limiting normal distribu-
tion, subject to sufficient smoothness. Subsequently de Jong and Woutersen| (2007) and Kotlyarova

and Zinde-Walsh| (2009) have extended the Horowitz results. Kordas| (2006) has extended the

3When the model is not fully identified, the choice of prior generally matters in large samples in Bayesian analysis (e.g. Moon,
and Schorfheide, 2009).



smoothed maximum score estimator (Horowitz} 1992, SMS) to allow for quantiles other than the
median and his procedure was implemented empirically by Belluzo|(2004); using quantiles other
than the median is also possible with the original MSE and the estimator proposed in this paper. Al-
though the best attainable convergence rate of the SMS is the same as ours under similar conditions,
our estimator is entirely different from Horowitz’s, our estimator is not specific to the maximum
score case, due to the nonconcavity of the objective function the SMS estimator is more difficult to
compute than ours, and no uniform inference procedures are available for it.

One problem with the SMS is that the choice of bandwidth is determined by the unknown degree
of smoothness. If the degree of smoothness used to determine the bandwidth differs from the true
degree of smoothness then the convergence rate of the SMS is suboptimal. Indeed, Pollard|(1993)
has shown that /7 is the best rate that can be achieved if only the smoothness conditions for the
MSE are satisfied and that the SMS will then have a bias term which vanishes more slowly than
¢/n. The same problem arises for our estimator and the choice of «,. Kotlyarova and Zinde-Walsh
(2006, KZ) proposed an estimation procedure which automatically adapts to the unknown degree
of smoothness. The advantage of our estimator over the SMS estimator, when both are combined
with a KZ-like procedure, is the uniformity of our inference method across input parameter—values
including the ¢/n-convergence case. For example, with a KZ-like estimation method, our inference
procedure (with minor adaptations) could accommodate the possibility that only the smoothness
conditions for the MSE are satisfied. It is difficult to see how — absent a uniform inference procedure

— one could accomplish this for the SMS.

Horowitz|(2002) established that the bootstrap (Efron and Tibshirani} [1997) offers an asymptotic
refinement for the SMS estimator. In order for such a refinement to obtain, the rate at which the
bandwidth tends to zero is different from the one resulting in the optimal convergence rate of the
estimatorﬁ We have made a preliminary investigation on the bootstrap in our context, but intend
to establish rigorous results for a procedure providing asymptotic refinements in the future. On
the basis of our preliminary work, we conclude that the bootstrap is inconsistent if a;, increases
no slower than ¢/n for much the same reasons that the bootstrap is inconsistent for the regular
maximum score estimator (Abrevaya and Huang, ZOOS)H We further conclude that if a;, increases

more slowly than /7, then the bootstrap will be consistent. Moreover, asymptotic refinements will

4This is typical for nonparametric estimators, but an unattractive consequence is that the ratio of the width of the ‘regular’
confidence interval to that of the bootstrap confidence interval decreases to zero as the sample size tends to infinity.
5Subsampling (Politis, Romano, and Wolf,|1999) has been shown to be consistent for a class of {/n—consistent estimators by
Delgado, Rodriguez-Poo, and Wolf| (2001), but is less attractive than the bootstrap for reasons of efficiency.



obtain provided that there is sufficient smoothness that is not exploited to optimize the convergence
rate of the estimator.

The bootstrap and the uniform inference procedure have different goals: with the bootstrap the
actual coverage probability of the confidence interval converges faster to the nominal one if &y,
increases sufficiently slowly and there is ‘surplus’” smoothness; the uniform inference procedure
provides robustness to the choice of a;,. These two goals are mutually exclusive in the current context
(and for KP estimators generally) since the bootstrap is inconsistent if «;, increases no slower than
+/n. We focus on the uniform inference procedure here because, in view of the two discontinuities in
the limiting distribution as a function of the rate of increase of «,, we believe it is the more serious
of the two problems these procedures address.

As noted at the beginning of this section, for the maximum score case our estimator can be
computed using Gibbs sampling. It turns out that computation is fast, simple, and accurate. If one
chooses a prior for which a closed form solution exists for the integrated prior of each coefficient
conditional on the others then computation of our estimator involves nothing more complicated
than drawing uniform random numbers, sorting, and averaging. Likewise, irrespective of the type
of [Kim and Pollard|(1990) estimator, uniform inference requires little more than drawing random
numbers from a multivariate normal.

We study the properties of our estimator in a limited simulation study. The behavior of the
proposed estimator reflects what one would expect on the basis of the theory. First, there is a tradeoff
between bias and variance, with higher values of «,, resulting in less bias, but more variance. Further,
the asymptotic bias can be corrected using Jeffreys” prior but if «;,, is chosen very small then the
estimator is biased towards the mean of the prior. Finally, the uniform inference procedure moves
smoothly from the limiting distribution of the maximum score estimator to the normal with the
value of «,,.

There are issues of potential interest that are not studied in this paper in addition to those, like
the bootstrap, that were discussed above. First, one could look at statistics other than the posterior
mean, as do/Chernozhukov and Hong|(2003). Further, using our methodology for the least median
of squares (LMS) estimator of [Rousseeuw| (1984) requires a nuisance parameter problem to be
addressed and its breakdown point to be determined; see Zinde-Walsh|(2002) for an adaptation of
the SMS idea to the LMS case.

The paper is organized as follows. In section 2| we discuss our estimation method and derive

convergence results in section [, which also includes a discussion of both of our bias correction
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methods. Our uniform inference procedure is described in section[4 Finally, the simulation study is

contained in section Bl

2. ESTIMATION METHOD

2.1. Set Up. Let L,(0) = n= 1Y, gi(0) be the (renormed) objective function of a /n—consistent
estimator of an unknown parameter vector fy € @ C R?. The functions g; = g(&;, -) are defined
such that g;(6p) = 0 a.s.. For the specific case of the maximum score estimator with regressor vector

x; = [a;, z]|T where the coefficient on a; is normalized to equal minus one we get for &; = [y;, x]]7,
8i(0) = (2yi — 1) (I(a; < 2]60) — I(a; < z]6))), 1)

but the results below apply to general g;, provided that our assumptions are satisfied.
We consider Laplace-type estimators of the form

[ 07(0) exp(a2L,(0))d6

0= [ 7(0) exp (a2 L, (6))do ’

()

where {a, } is some sequence for which &, — coasn — oo ﬂ we will call 7T a prior, even though for
most of our results we do not require it to be nonnegative. If the prior is nonnegative everywhere,
then  can be interpreted as the mean of a posterior distribution; we will use the term ‘posterior’
regardless of whether the prior is nonnegative. If L,, were the objective function of a \/n—consistent
estimator instead of the one considered here and «,, = /1, we would have the Laplace estimator of
Chernozhukov and Hong|(2003).

Provided that 6, is a unique maximizer of Q(6) = E[g;(0)], consistency is straightforward to
establish; see e.g.|Robert and Casella| (2004), corollary 5.11. The purpose of this paper is to study the
effect of the choice of {w,} on the asymptotic properties of 8. If a, increases faster than ¢/n then it
turns out that  is asymptotically equivalent to the estimator maximizing L,, for which Kim and
Pollard| (1990) derived limit resultsﬂ Although we emphasize the case in which &, increases no
faster than /n, we provide results for a, that increase faster, also. In subsequent sections we show
that the best achievable convergence rate (given sufficient smoothness) is x, = max(/n, Vn/ay),
albeit that to achieve a convergence rate better than #%/5 requires bias correction; this is in line with

the properties derived inHorowitz|(1992) for the SMS estimator.

6In Chernozhukov and Hong|(2003) &, = \/n, but its choice does not affect the limiting distribution provided that &, diverges
to infinity.

7For the case in which L, is the maximum score objective function, if a, increases faster than /7 (not &/n), 0 is for large n in
fact a prior-weighted average over the maximum score estimator, i.e. the (possibly noncontiguous) set of values maximizing
the maximum score objective function.
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2.2. Intuition for our results. We now provide some intuition for our results when «;, increases no
faster than Q/ﬁ, but please note that our results also cover the case in which &, increases faster than

that. Let S,(0) = n~ 1 Y, §;(0) with §;(0) = gi(6) — Q(0). Then (@) can be rewritten as

[ 07(0) exp (2284 (8) + a2Q(0))do

0= T 2(0) exp(4354(6) + 43Q(6))d0 ©
Let B, = v/a;3 /n. By applying the substitution t = a, (6 — 6y) to (B) we obtain
n A 1 [ trta(t) exp(BuSu(t) + Qu(t))dt
—(0—06y) = — = , 4
@ 0= 00) = g () exp (Badn(t) + Q1)) dE @

where 71, (t) = (00 + t/an), Qu(t) = a2Q (6 + t/ay) and S, (t) = \/nay Sy (00 + t/ ).
For large n, Q,(t) =~ —t"Vt/2 for V.= —Q"(6y) and 7, (t) ~ mp. Replacing Qy, 71, in the right
hand side of () with their respective approximations yields

1 [texp(BuSa(t) —tTVE/2)dt 1 [texp(BuSa(t))¢v(t)dt
Bn [exp(BuSu(t) —tTVE/2)dt — Bn [exp(BuSu(t))gv(t)dt’

©)

where ¢y (t) is the multivariate mean zero, variance V1, normal density function.
We establish in an appendix that §, = G, where G is a tight Gaussian process defined on the

entire Euclidean space. So if a;, = c2/n then (B) converges in distribution to

lftexp(ciG(t)WV(t)dt
a3 [exp(c3G(t))py (t)dt’

which is indeed the result of theorem below. If o, = o(y/n) then B, = 0(1) and the right hand side

/t§n(t)¢v(t)dt

which has a limiting normal distribution since S, is a renormed sample average of a sequence

in (5) is approximately

of i.i.d. mean zero variates. This is a result to be established in theorem [4, albeit that the result
of theorem [4| contains a bias term 4,,. This bias term arises from the approximation of Q,(t) by
—tTVt/2. 1t is asymptotically negligble if a, diverges at a rate faster than /n. If a, = c2{/n then
the limiting distribution will be a normal with nonzero mean, as shown in theorem 6| much like
in the case of nonparametric kernel estimation of a function of a single argument and indeed like
Horowitz| (1992). We derive an expansion for the bias in theorem [5|and show that — subject to
additional smoothness conditions — the bias can be removed. A bias—corrected estimator then can

have a convergence rate arbitrarily close to /7.

8This approximation uses ex 28u(1)) =~ 1+ B,S,(t) and the fact that oy (t)dt =1, [ tpy(t)dt =0.
19 p



So, letting a, increase at a rate slower than {/n implicitly smoothes out the discontinuities in Ly,

much like the SMS estimator of |Horowitz (1992) does explicitly.

3. CONVERGENCE RESULTS

We now proceed to state our main results. We first state our main assumptions, followed by a
discussion of y/n—consistent estimators, followed by a discussion of estimators that converge faster.

We will use the maximum score case as an example to motivate the assumptions.

3.1. Assumptions. The first of our assumptions is standard in the literature and is also found in

Horowitz| (1992).
Assumption A. 0 is in the interior of some compact set ©.

Assumption Bis a condition necessary for identification. Indeed, note that Q(6y) = 0 by construc-

tion.
Assumption B. V0 € © : 6 # 6y = Q(0) < 0.

Let p(a,z) = Ply = 1|a = a,z = z] and f(a|z) denote the conditional density of a at a given
z = z. For his maximum score estimator Manskil (1985) requires that the support of x is not contained
in any proper linear subspace of )¢, that 0 < p(a,z) < 1 for almost all 4, z, and that for almost all
z, f(alz) > 0 for all a € R, which is sufficient for assumption [Bl Assumption [B|is less primitive
than the identification conditions of Manskil (1985), but it applies to all estimators satisfying our

conditions.

Assumption C. 71(6y) # 0, 7t is bounded in absolute value on © by 7t, zero outside of ®, and integrates to

one.

Since we can choose the prior, assumption|Clis innocuous. The same cannot be said for assumption

D)

Assumption D. The function Q is continuous on ©. Further, for some q > 0, Q is A = q + 2 times
continuously differentiable at 6y; 7t is q times continuously differentiable at Qoﬂ V = —Q"(6y) is positive
definite.

o1 q = 0, 7t is merely assumed continuous at 6.
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Kim and Pollard (1990) derived the /n-limiting distribution of the MSE assuming A = 2. The
degree of smoothness of Q depends on that of p(-,z) and f(+|z).

5_consistent estimator subject to

For the maximum score case, Horowitz (1992) obtained a n?/
assumptions including that (i) f(a|z) has a uniform upper bound in a and (almost all) z, (ii) for
almost all z, f/(a|z) is continuous in 4 in a neighborhood of 4 = z76) with a uniform bound over
z, (iii) for almost all z, the second partial derivative of p with respect to a, p,, (a,z), is a continuous
function of a in a neighborhood of a = z76y, (iv) E||z;||* < oo, (v) V is positive deﬁnite To achieve
the same convergence rate we need A = 3 (see assumption[H]below), which implies the existence of
three moments on z;, two partial derivatives of p with respect to a at z"6), and two derivatives of
f(+]z) at zT6p. So the conditions are different from but similar to those in|[Horowitz (1992); neither
set of assumptions implies the other and neither estimator yields a better convergence rate under
the conditions of the other. The comparison between the conditions necessary for the two estimators
to obtain a certain convergence rate is similar under additional smoothness. Since we accommodate
estimation problems other than maximum score, our conditions are less primitive. Finally, lemma
shows that for the maximum score case V = —2E [z;z] pa(z] 60, zi) f (2] 60]2i) |, which by lemma
[G.2is positive definite under weak conditions.

Assumption E. E[sup,.qa [8i(0)|] < oo and for some 1,1 > 0 with 1+ 1* > 1, some function v for which
TP v (B py (£)dt < oo, and all t € R, limy 0 B|Zi(60 + /) |*T < (t).

Assumption [E|is trivially satisfied for the maximum score case since it only involves indicator
functions. The second part of assumption [E|is implied by assumption [F]below if g is a bounded
function for 1 = 1* = 1 since the limit in assumption [Eis then bounded by a constant times H(f,t).

Assumption is also used in [Kim and Pollard|(1990).
Assumption F. Forallt,s, H(t,s) = limy_.co «E[gi (60 + t/a)gi(60 + s/ )] exists and isﬁniteEI

We show in lemma that for the maximum score case using the normalization adopted earlier,
H(ts) = E[|M(z]t,z]s,0)|f(z]60]zi)] with M the median of its arguments. Assumption (G]is

needed to establish weak convergence of the process S, to G.

OHorowitz’s conditions are phrased differently and use the conditional distribution function F,, , of ‘latent variable equation’
(Manski,[1975) errors u; given regressors. Then, p(a,z) = 1 — F,, . (a — 27 6y|a, z) so that the degree of smoothness of p(-, z)
corresponds to that of F, . (|-, z). Therefore, A~times differentiability of Q corresponds to (A — 1)-times differentiability of
both f(-|z) and Fy|, . (+|-, z). See also assumptions 8 and 9 in[Horowitz|(1992).

HNote that this implies that limsup ., H(, t)/ It]] < oo.
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Assumption G. Let .7 = {g(+;0)}gopa and for 1 = o(&y), let Fy = {\/Gng(-; 00 + t/8n) }1c 7, where
T is an arbitrary compact subset of R?. Then
(i) For all ¢ in the support E of &;, §(&,0) is right— (or left-) continuous at 6.
(i) There exists an envelope function F, such that for all § € E: sup, 5 /& |8(&;00 +t/&n)| < Fu()
and E[F%] = O(1) where F,; = F,(&;).
(iii) Forany e > 0, E[F%I(F,; > ey/n)] = o(1).
(iv) Foranyen | 0, supy;_g ¢, &nlE [(gi(eo +t/an) — gi(6o + S/&”))Z} =0(1).
(v) Let AN (€, Fn,1La(2)) be the (ILpy—) covering number for %, with respect to the probability measure
2. Then for every €, | 0, sup 4 [1" \/log (A (ellFull 22, Fn, L2(2)))de = o(1).

Assumption|G|is common, but is not always straightforward to verify. It ensures weak conver-

gence of S, to G and is satisfied in the maximum score case as theorems|l|and [2|show.

Theorem 1. Under assumptions Sy = Gon L°(F, D, ...) for any increasing sequence of compact
sets 7; such that 0 € 71 and whose union is RY, where L* (T, P, . ..) is the space of functions which are

uniformly bounded on each 7.

Proof. The proofs of all theorems are in appendix O

Theorem 2. For the maximum score case, under assumptions if &y = o(n) then assumption [Gis
satisfied if E [sup, f(s|zi)|zi]|] < co.

3.2. Cube-Root-n-Convergence. We are now in a position to state our limit results. The first of
these deals with the case &, = c2/n. Let G be a mean zero Gaussian process on ¢ with covariance

kernel H.

Theorem 3. (i) If )y = cﬁ /1 for some 0 < ¢, < o0 and assumptionshold with &, = «, then

a1 [texp(RG(t))¢v(t)dt

i [exp(c3G(t))py (t)dt
(ii) If ¢/n = o(ay), T = mingeg 7(0) > 0, and assumptionshold with &, = /n then for G(t) =
G(t) —tVt/2,

(6)

V(8 — 6)

In(d—0y) L argrtnax@(t). )

Theorem P|establishes that our estimator has the same rate of convergence as the Kim and Pollard
(1990) estimator, i.e. the equivalent extremum estimator, if one lets a;, increase at a rate no slower

than ¢/n. In fact, part (ii) of theorem demonstrates that if a,, increases faster than /n then the limit
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distributions of the Kim and Pollard| (1990) estimator and ours coincide. There is continuity between
parts (i) and (ii) of theorem [3[since if one lets ¢, — oo after n — oo, then the limit distribution of (i)
converges to that of (ii). To see this, consider a different representation of the same limit distribution
that arises if c4 is incorporated into g; instead of into uc% Then

4 Jtexp{ci(G(t) — 1TVt/2) }dt

V(0= t) [exp{c(G(t) — TVt/2)}dt

®)

For large values of c,, the right hand side of (8) is close to the value at which G(t) — t"Vt/2
is maximized, whose distribution is exactly the limit distribution of the |Kim and Pollard| (1990)
estimator.

Likewise, it follows from () and 1'Hopital’s rule that </7(8 — 6y) converges to zero as ¢, | 0. More
interestingly, noting that v/n/a, = ¥/n/cq, (6) suggests that \/n/a,(8 — 6) has an approximate
J tG(t)¢y (t)dt—distribution, which is indeed the normal distribution of theorembelow.

Intuitively, then, the accuracy of fis decreasing in the value of c, with the Kim and Pollard|(1990)
estimator the least efficient possibility. In numerical results reported in section[5| we find that the
limiting distribution indeed becomes more dispersed as ¢, increases. But please note that these are
asymptotic results; for small values of c, the small sample bias can be substantial. Nevertheless, the
Kim and Pollard| (1990) estimator (or indeed our estimator with &, = o), and hence the maximum
score estimator, is unlikely to be the optimal choice in the class of estimators studied here, even in

samples of finite size.

3.3. Faster convergence. We now proceed with the case in which &, increases more slowly than

n. Let

Ny = ad/n]o, [ 7(0)(0 — 00) exp(a3S,(0) +a2Q(0))d0,
Dn =l [ 71(0) exp(a2S,(0) +a2Q(0))db, ©)
By = al\/n/ay, [ 70(0)(0 — 8)) exp(a2Q(8))do.

Theorem 4. If a, = o(/n) and assumptions are satisfied with &, = &y, then

n A B . </Vn —PBn d
x (6 —69) Ty 7 — N(0,7), (10)

where ¥ = [[ tsTH(t,s)py (t)py (s)dtds.

12Alternatively, one can carry out the substitution f = t/c2 and note that the process G* with G*(f) = G(c2f)/c, has the
same statistical properties as G.
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In lemma|G.4we show that for the maximum score case in which the regressor vector includes a

ConstantErI

1 ziz)
Y = V—luz[ i f(zT(Jozi)}V_l, (11)
2ym \/z2 V- lz; '

which suggests that using observation—specific weights can reduce (some scalar—valued function of)
the asymptotic VarianceE] Some scale normalization of the weights should be imposed lest they
assume the role of a;,. We do not pursue a weighting procedure in this paper.

The bias term %, can affect the limiting distribution. As will become apparent below, if Q is
sufficiently smooth then %, decreases at a rate of 1/a,8, = Vn/a, meaning that a,, ~ {/n yields
the typical nonparametric convergence rate of n~2/3, also found in Horowitz| (1992) (for his & = 2).

We first state our assumption requiring additional smoothness of Q.
Assumption H. g > 1.

We can now obtain a simple expansion for the bias, followed by an expression of the asymptotic

distribution of n2/3(8 — 6y) when a, = 2 /n.

Theorem 5. Let assumptions E]—@ be satisfied. For finite weights by independent of n and which are zero
for even T, By = B! ZZ:O by /oy + o(a;qﬁgl).

An expression for the values of by, is provided in the proof of theorem 5 In particular, by, =
Cy [(moDgs(t) + D1 (t))tepy (t)dt, where Cy = 1/¢y(0), o = 7(6y), D1 () is the first term in a

Taylor expansion of 71(6y + t) about 77(6y), i.e. tT7y(6p), and D3(t) is the third term in a Taylor
expansion of Q(6y + t) about Q(6p). This then leads to the following result.

Theorem 6. Forany 0 < ¢, < oo, if &,y = c2/n and assumptions @-@are satisfied, then

22508 — 6) N<f(7TODQ3(t) Zizl(f))WV(f)df,Ci%) (12)

It is possible to minimize the asymptotic mean square error (AMSE, squared mean plus variance

in (I2)) by using an estimate of c}; = 1€/ 4||l7;‘l |2/C% 3 tr(¥) in lieu of c,. However, because the

asymptotic bias can be removed by the choice of a prior and since the asymptotic distribution using
cy; would have nonzero mean — which is at odds with the uniform inference procedure at the heart
of this paper — we do not include this result here; it is available from the authors” website.

13What is needed is in fact weaker: for somej=1,...,d: IP[zij =0]=0.

141 ike in other contexts (Cragg)|1992; Pinkse} 2006), a scalar-valued weight function which optimizes the asymptotic variance
of all linear combinations of the coefficients of 8 does not typically exist.
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For the specific case of maximum score, the limit distribution of theorem @ can be compared to
that of the SMS estimator of [Horowitz (1992). Generally, which estimator has a smaller mean square
error depends on the choice of input parameters (kernel and bandwidth in the case of SMS, prior
and ¢, here) and the joint distribution of (y;, a;, z;). It can be shown that for the very special case in
which d =1, z; = 1 a.s., anormal kernel is used for the SMS estimator and a flat prior is used for
ours, and bandwidth (SMS) and c, are chosen to minimize the asymptotic mean square error, the
asymptotic mean square error of both estimators is identical regardless of the joint distribution of

i, a; )| 7| A flat prior is however not a particularly good choice as theorem |7|demonstrates.
y p p Yy &

3.4. Bias Correction. There are many ways to correct the bias. Besides various resampling schemes,
one could choose a prior to remove the bias or estimate the bias directly. We discuss both possibilities
below.

From it follows that the bias depends on the choice of prior as well as the values of the second

and third partial derivatives of Q. These derivatives are estimable. As noted in theorem bye =0

* *

for all even values of 7. Consequently, provided that an estimator b n of b;l converges to b g1 we
obtain the result A
N by
n2/5(8 - 6p) — - L N(0, 7). (13)
C;Dn

With g = 3 and a, = c2y/n, can be strengthened to
/b3, _ b3
ADn Dy

n*?(6—60) — 9 N(0,27),

assuming b3; converges to b3, at a rate faster than n?/? which, in light of the smoothness condition
g = 3, should not be problematic. This process can be repeated to obtain an estimator of 8y which
converges at a rate arbitrarily close to /1, assuming sufficient smoothness. In particular, using

oy, = cinl/(2q+3) leads to

=T A
FEZ RN 1 & n*5bge 4
nzm(e—eo)—Z OTH"HN(O,&%), (14)
T= 14

where I;;T = 0 for even values of 7.

It turns out that removing the bias in theorem|f]can also be accomplished by choosing a prior that
resembles Jeffreys’ prior (Jeffreys, [1946), here 77(6) det(—Q’ ! (6)), near y. However, since Q is
not necessarily globally concave one should choose a prior which is both everywhere bounded and

which resembles Jeffreys’ prior in a neighborhood of 6. An example is 71;(8) o« 4 /|det(—Q"(6))],

15The derivation is available upon request.
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which can be estimated by 7y(6) o /|det(—Q"(0))| for some estimator Q" which satisfies the
following assumption. Let vec denote the familiar vec—operator, which stacks the columns of a

matrix into a vector and let Q" and Q’”’ be defined as d vec” Q” /960 and d vec” Q" /96, respectively.

Assumption I. For r* > 0and any py = o(1/ay), Q" is bounded on © and satisfies

sup  ([1Q"(6) = Q"(8)|| +11Q"(8) — Q" (B)Il) = 0p ().

6—00ll<pn

The conditions specified in assumption|[are generic because the properties of Q" depend on the
nature of g;, on which we only imposed generic conditions. In the maximum score case, Q" and
Q" are average derivatives (Powell, Stock, and Stoker, 1989) and hence can typically be estimated at
a rate much faster than the d + 1-dimensional nonparametric rate. For r* = 0, no rate is required.

For r* = 2, a rate of n2/5

is sufficient, but when we require r* = 2 more derivatives of Q" will be
available. Let 8; denote the estimator which is identical to # except that it uses the prior 7t} defined

above.

Theorem 7. Let assumptions[AHH|be satisfied.

(i) Ifay = 2/ and assumptionmis satisfied with r* > 0, then n>/5(8; — 6y) 4N, 27).

(i) If /n = O(ay), g > 3, and assumptionl:T]is satisfied with r* > 2, then for some finite B}, \/n/u, (8y —
60) — B /03 BnTn > N(0,27).

So subject to the conditions of theorem 4} using (an estimate of) Jeffreys’ prior yields a zero mean
limiting normal distribution (part (i) of theorem @), and with extra derivatives the n*/°-rate obtains.

Further bias reduction can be obtained by choosing a prior which knocks out the higher order
bias terms, also. Because the bias only depends on derivatives of Q" and 7 at 6, such priors are
straightforward to construct by using suitable polynomials in 8 — 6y whose coefficients consist of
estimated derivatives of Q" at 6, albeit that this procedure would require an initial plugin estimator
to use in lieu of 6y, whereas such an initial plugin estimator is not required for 7= used in theorem

[/l An example of such a polynomial prior which removes the 7 = 1 term in the bias expansion of
theoremis 7t(0) = y/det(—Q"(6)), with
Q"(0) = Q"(60)/2
T -
+(Q"(B0) (12 (8~ 80)) +Q"(80)) (Q"(80)) ™" x (Q"(60) (1@ (6~ 80)) + Q" (80)), (15)
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which is guaranteed to be negative definite since it is the sum of a negative definite and negative
semidefinite matrix. Methods for estimating Q" and Q" for the maximum score case are discussed
in appendix

An alternative to removing the bias by one’s choice of prior is to estimate the bias directly. The
bias term in theorem [} for instance, can be estimated using

f(”ODQy,(t) + Dy 1))ty () dt
e :

(16)

In particular, for d = 1 and a flat prior, reduces to Q”’(ép)/Zcﬁ(Q”(ép))z, with 8, some
preliminary estimator.

Since the form of an estimator of Q" and its derivatives depends on the nature of g;, establishing
general analytical results for the bias correction is not possible. It would be possible to do so for
the maximum score case, but this would entail not much more than a rehash of results that are
well-known and are available in the literature.

For the maximum score case, nonparametric estimators can be shown to be uniformly consistent
for Q” and Q" in a neighborhood of 6 that decreases more slowly than 8. So consistency obtains

2/5

and the bias up to order n™</ is removed.

4. UNIFORM INFERENCE

To conduct inference one can draw random numbers from the [Kim and Pollard| (1990) limit
distribution if a;, increases faster than </n, from the limit distribution of theorem 3|if «,, increases at
the /7 rate, or use the normal of theorem@] if o, increases more slowly than ¢/n. Since these are
only rates for &, in a sample of finite size it is generally not clear which of these three distributions
should be used. Let G be G with H replaced with some estimator H. As it turns out, provided that
the bias is asymptotically negligble, for x, defined in section and V some consistent estimator of
V, xn = xn(0 — 6y) and

t G(t) — Bt TVE/2)dt — min(B3/2, g4/3).
¥, — / exp(ﬁmf?r() B2 | /2)  with B = min (B2, gE/%) W
[exp(BnG(t) — Bt TVt/2)dt Bz = min(g2, %),

have the same limiting distribution in all three cases.
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Theorem 8. If V —V = 0,,(1) and H is a positive semidefinite covariance kerneﬁ which is pointwise consis-
tent for H and for some 0 < cy < 2 and all sample paths of H satisfy lim SUP| ¢ 00 (H(t,t)/[|t]|]") < oo,
then Y, has the limiting distribution derived for x, in the corresponding portion of theorems andif (i)
Bn = 0(1), (i) 1/ By + Bu = O(1), (iii) 1/ B = o(1).

The requirement that H be a positive semidefinite covariance kernel is both necessary and
sufficient for there to exist a Gaussian process G with that covariance kernel (Doob), 1953, theorem
3.1). Drawing random numbers using is simple and is explained in appendix

So the proposed inference procedure is uniform in the divergence rate of «,, despite the fact that
the limiting distribution of  depends on the rate at which a,, increases.

The limiting distribution of Laplace—type estimators sometimes coincides with the limit of the
posterior, i.e. im0 exp (a3 Ly (69 + t/a)) up to a proportionality constant. Indeed, Chernozhukov:
and Hong| (2003) derived conditions under which this is the case for objective functions that admit a
quadratic expansion. In the case of coincidence of the true distribution and the limit of the posterior,
the (Gibbs) draws used to obtain 8 can then be used to construct confidence intervals. Here the limit
of the posterior is a random object if a,, increases at the rate of /7 (or faster) and is N(0, V~1!) if a;,
increases more slowly than /7. So in neither case are the posterior and estimator limit distributions

the same.

5. PERFORMANCE

As noted before, the main caveat of our estimator is the need to choose input parameters 7, a;,.
The ability to choose a prior has been shown to be valuable in bias reduction, at least theoretically.
Its practical value is examined later on in this section. We begin by analyzing the effect of one’s
choice of ay,.

We consider a small number of designs, all in the context of the maximum score estimation
problem. In all cases y; = I (ziTGo —a; +¢(a;, zi)u; > 0), where u; is a standard normal independent
of a;, z; which are also standard normal and have mutually independent elements. Unless otherwise
stated 6y = [0, TT]T, where T € R9-1 is a vector of ones and the prior is uniform on a compact
support, typically [—2,2].

For figure we usedd =2and ¢? = (22 +1)/2. Figureillustrates how (for a single data set)

the normalized posterior varies with a,; the value at §) equals one. Larger values of «; lead to a

167 is a positive semidefinite covariance kernel if for any integer 0 < T* < co and any values t1, f, ..., t7+ € R, the matrix
with (i, j)-element A (t;, t j) is positive semidefinite.
17please note that for part (i) of theorem #n and </n can differ by a multiplicative constant.
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exp (a2 Ly (601,62))
15+
11
05| y
-1 —0.5 0

FIGURE 1. One draw of exp (a% L,(0, 92)); n = 1,000.

narrower posterior density, so 05 is an average over a comparatively small range of 6-values. In this
particular instance the posterior density for a;, = 10 is close to the truth (one), but for other data sets
it may not be. Because it is an average over fewer f—values whose range varies from one data set to
another, 0 for a,, = 10 has a greater variance than for a, = 4. But the bias is less for greater values
of &, One reason is that the posterior is asymmetric; in figure [T the posterior for a, = 4 tapers off

much faster to the left than it does to the right, which is due to the particular design used.

flO T —ua, = 0.1
---ay =25
Ay = 10
81 s ty = 40
61 P
41 Lo
2| ,’ \
’/ \\\ —— 62
0 : - - - i : : .
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

FIGURE 2. Density of 0, for various choices of a,,; d = 2, n = 1,000
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A secondary cause of the bias is that for smaller values of &, the prior receives relatively more
weight, thereby biasing one’s estimates in the direction of the mean of the prior. Inspection of the
formula for by, in the proof of theorem 5| demonstrates that the asymptotic bias depends on the
prior and its derivatives only at 8y; the value of the prior and its derivatives at other values of 0
are irrelevant for the asymptotic bias. For a flat prior the derivatives at ) are all zero and the prior
drops out of the bias formula. Therefore, the secondary bias is not correctible with the methods of
section[3.4]

To see that this secondary bias can be substantial for small values of a;, consider figure 2| For
very small values of a;, the distribution of 0, is centered around the mean of the prior (zero). As x,
increases this secondary bias decreases until it becomes small compared to the primary (asymptotic)

and correctible bias for a; = 10. Here the primary bias is positive.

flo 1 —ua,;, = 0.1
---ay, =25
a, =10
81 ay; = 40
6 4
4 4
2 4
0
0 : . : 2
0.2 0.4 0.6 1.6

FIGURE 3. Density of 92 for various choices of a,; d = 2, n = 1,000, prior mean
coincides with true value.

This point is reinforced by figure 3] which represents the results of an experiment identical to the
one for figure 2} except that the mean of the prior coincides with the value of 6py; both equal one.
There is some bias for smaller values of a;, but this bias is all in the same direction; positive.

A heuristic method for choosing a;,, then, is to compute the value of 8 for two flat priors with
different means, say 9(1), 9(2), and to choose the smallest value of &, for which the difference
between @(1) and 9(2) is small. Subsequently, the imputed value of &, can be used with a prior

of one’s choosing. Alternatively, the procedure of choosing «,; can be tailored to the nature of the
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objective function, e.g. one could construct a method for choosing «;, specific to the maximum score

case.

— 0, =32
61 ---a, =10
ay, =5.6
a, = 4.0
4,,
2,,
0 -

0.6 0.8 1 1.2 1.4 1.6 1.8

FIGURE 4. Density of 0, for various values of a,,; d = 10, n = 1,000

The experiment depicted in figure 2]is repeated in figure[@with d = 10. The results suggest that
the value of «;, need not depend on 4, but that the rewards for a good choice of &, increase. Indeed,
the estimator variance is substantial for a,, = 32 and would be still greater for the maximum score
estimator. In fact, for a v/n—consistent estimator to overcome the difference in variances between
ay = 10 and &, = 32 over ten times as many observations would be needed@

Figure[flunderlines the value of heteroskedasticity-robust estimators for the binary choice model,
such as the (smoothed) maximum score estimator and our Laplace-transform based estimator. Even
though there is only a modest amount of heteroskedasticity and the error distribution is normal,
the probit estimator has substantial bias. Naturally, under homoskedasticity with a normal error
distribution the probit estimator will outperform the robust estimators since, as figure [p|indicates,
its variance is considerably smaller than that of the other estimators. It is also clear that here too the
maximum score estimatori?] has greater variance than the Laplace-type estimators, which suggests
that choosing &, = oo is suboptimal even without bias correction.

We now investigate the performance of one of the proposed bias—correction techniques, namely

the use of Jeffreys’ prior. It should be pointed out that using Jeffreys’ prior takes more time than the

18The ratio of variances of 8-values (for o, = 32 versus a,, = 10) in the simulations is about 5.8; the number ten comes from
the fact that 5.8%/2 = 14 > 10.

19Compu’tecl using a grid search.
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f 6 —— DProbit
- - - Mmax.score
“n — 40
o, =10
4 i
,\\.\\“\ 6,
0 : : S s 1
1 1.2 1.4 1.6 1.8

FIGURE 5. Density of 0,; probit versus maximum score and Laplace; d =2, n =
1,000

S =P, N W o

FIGURE 6. Density of 92; Jeffreys (solid) versus uniform (dashed) prior; n = 1,000,
d=2.

flat prior unless the conditional prior of one element of the parameter vector given the others has a
closed form solution. For our experiments, the cost of using Jeffreys’ prior was far from prohibitive.
If computation time becomes a serious issue, one can instead opt for the more convenient, faster, and
asymptotically equivalent form presented in (I5), albeit that we expect the finite sample performance
of such a procedure to be inferior.

Figure|6|depicts the bias for Jeffreys’ prior and the correctly centered uniform prior for varying
values of «,,. The support of Jeffreys” prior was chosen such that the mean of Jeffreys’ prior was
also equal to one. The purpose of setting the mean of the prior equal to the truth is to assess the

ability of Jeffreys’ prior to correct the asymptotic bias without obfuscating the comparison by the
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asymptotically negligible bias caused by the discrepancy between the mean of the prior and the true

parameter value.

Ky = 5.6 f 6 1
f A
f 4 . 4
2+ A 2
0 ‘ e 0
%) 1 15 62

FIGURE 7. Density of 62; Jeffreys (solid), uniform (dashed), estimated Jeffreys
(dotted) prior; n = 1,000, d = 2.

Figure [f| demonstrates that the bias decreases in a,, for both priors, and that using Jeffreys’ prior
removes most of the bias of the uniform kernel, which is encouraging. It is apparent, however, that
even Jeffreys’ prior does not remove all asymptotic bias, especially when «; is small, which is due to
the fact that for small values of «;, the higher order terms in the bias expansion are of comparatively
greater importance.

We repeated the same experiment, but now with the estimated version of Jeffreys’ prior included.
The results are depicted in figure[7] Q” was estimated using the method descibed in appendix|L.3}
Evidently, the error in estimating Q" is small relative to the bias reduction vis—a—vis the uniform
prior. We conclude that an asymptotic bias correction using Jeffreys’ prior is valuable unless &, is
chosen large.

Finally, we evaluate the quality of our uniform inference procedure; the results are in figure [§]
As figure 8| demonstrates, the uniform inference procedure of theorem [§ moves gradually from
the maximum score limiting distribution to the normal limiting distribution as «;, (and hence )
decreases. It does a good job approximating the finite sample distribution of 8, except that for small
values of a, there is substantial bias, which is due to the fact that estimates used to generate the
finite sample distribution are not higher order bias—correctedm

The reason that the results in figure8{use a design with d = 2 only is that the limiting distribution

of the maximum score estimator becomes very expensive to simulate for higher dimensions. This

20We do use Jeffreys’ prior.



22

56,

~
e

56, _5 ‘ 5 6>

FIGURE 8. Density of x, (6, — 6y) for various inference procedures: uniform (solid),
normal (dashed), maximum score (dotted), finite sample (densely dashed); n =
1,000, d =2, R = 3,000.

suggests that one should use our uniform inference procedure with a high value of B, to simulate the
limiting distribution of the maximum score estimator instead of trying to maximize G(t) — t7Vt/2
repeatedly. We found that the pattern of the remaining three densities for greater values of d (not

shown) is similar to the one depicted in figure
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APPENDIX A. PRELIMINARIES

A.l. Notation. Let v, = a;/(4q+4), Ty ={teR:|t] <74}, and T = R —T,. Let further for
vector-valued t, #/ denote 1if j = 0 and t if j = 1. Define Cy = [ exp(—t"Vt/2)dt = 1/¢y(0) =
(271)%/2//det(V) and let A _ be the smallest eigenvalue of V. Finally, let R, (t) = Q,(t) + tTVt/2.

A.2. Weak Convergence. The results in this section presume that assumptions|[Fand[Glare satisfied.

Lemma A.1. Let 3 C % - - - be a sequence of compact sets such that 0 € 73 and Rl = U2, ;. We then

have S, = G in L°( 7, P, ...), where G(-) is a Gaussian process with covariance kernel H.

Proof. By|van der Vaart and Wellner| (1996, theorem 1.6.1), it suffices to establish the weak conver-
gence of §,, in .£*(.7) for an arbitrary compact set .7 C R?. Since .7 is dense, assumption

ensures that forj =1,2,

‘ i } Y
Fhe =) (g(00 + /&) — g 80+ /&n) Y} j1_g<c

is a pointwise measurable class, and hence &’-measurable for every &; seevan der Vaart and Wellner

(1996, page 110). Note also that E[S,(t)Su(s)] = &,E[gi(60 + t/&,)gi(60 + s/&n)] — H(t,s) for

every t,s € .7 by assumption [} Therefore, the result follows from [van der Vaart and Wellner| (1996,

theorem 2.11.22). ]

Lemma A.2. Letfor ¥ >0,T = {t € R4 : ||t|| < §}. Then (i) forany 0 < ¢ < oo,
Su(t)|/11t]1> > ¢] = 0and (ii) P [sup,cre |Su ()| /[|H]* > ¢] = o(1).

limy .0 limy,—c0 P [SUP, e

Proof. Let S:n(t) = S,(t)/||t|| and G(t) = G(t)/]t||. Suppose without loss of generality that a; = 1.
Then the equicontinuity of §n on Fi follows from that of §n. Therefore on Fﬁ, §,, = G, which

is a uniformly bounded process in .£*(I'{). Hence, to establish (ii) ((i) is similar), note that

Su()]/11£1%) < supere (

Su(t)[(log [It])/[[£]|?) / Jog yu = Op(1)o(1) = 0p(1). O

SUPyers,(
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Lemma A.3. Foranyc > 0, sup,{|Su(t)| — ctTVt} = O,(1).
Proof. Follows immediately from lemma and the properties of G. O

A.3. Auxiliary Results.

Lemma A.4. lime|oSupjg_g, <, 1Q"(6) + V| =0.

Proof. Follows from the continuity of Q" at 6. O

Lemma A.5. For some 0 < ¢; < coandall § € ©, Q(f) < —min(cy, (6 —6p)' V(0 — 6p)/4) and
Qu(t) < —min(&Zcq, tTVt/4) for all t for which 6y + /&, € ©.

Proof. Follows from the fact that (i) @ is compact, (ii) Q has a unique maximum of zero at 6, and

(iii) Qpyp is continuous at fy with value —V. |

Lemma A.6. For any |c| < 1, any b, and any nonnegative integer j, |exp(cb) — Z{;:O(cb)s/s!‘ <

e+ exp(|b]).

Proof. We have
lexp(cb) — XL_o(cb)* /s!] < [T2141(cb) /s!] < [elF1 2 1, b /st < [l exp([b]). 0

A 4. Further Auxiliary Results. The results in this section presume that 0 < limy . Bn = cp <o

and that &,, = «a,,.

Lemma A.7. For all nonnegative and finite c1, ¢z, c3, ¢4 and any polynomial P,

(i) if c3 > O then [ ||P(t)[| exp(c1BulSu(t)| — cst™VH)dt = op(an ),

(ii) if ¢ + ¢3 > 0 then fr; |70, (£) P(t)|] exp(clﬁn|§n(t)| + c2Qu(t) — c3tTVH)dt = 0p (a;, ).
Proof. First (i). By lemma the left hand side of (i) is for any c of smaller order than

fr,ﬁ [|P(t)|| exp((ccicg — c3A—)||t]|?)dt, which for sufficiently small ¢ decreases exponentially in 7.
The left hand side in (ii) is by lemma of order no greater than

/ 170 (£)P(t)|| exp (c18n|Su(t)| — c2 min(cqa?, tTVE/4) — c5tTVE)dt
/ 1702 (£)P(t)[| exp (18| Su ()| — cocqas — c3tTVH)dt
—i—/ | 700 () P(t)]| exp (c1Bn|Su(t)| — (c2/4 + c3)tTVE)dt. (18)

The second right hand side term in was dealt with in (i). If c3 > 0, the first right hand side term

is bounded by the same expression with ¢, = 0, which was dealt with in (i), also. Finally, the first
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right hand side term if c3 = 0. Since supy |S, ()| = 0,(1) by lemma it follows that for some
¢* >0, [re [I7ta()P(t) ]| exp(c1Bn Su(t)| — cacqa?)dt is of order no greater than exp (—c*a3). ]

Lemma A.8. Forany c >0, (i) P [sup,cp I(|Ru(t)| > ct™ViE/4) # 0] = o(1).
Proof. Follows from lemma Yn = o(ay), and the fact that R, (t) = t7(Q" (60 + t/an) + V)t/2.

O

Lemma A.9. For all nonnegative and finite c1, c3, c3, ¢4 and any polynomial P,

(i) if c3 > O then [ ||P(t)|| exp(c1Bn|Su(t)| — cstTV)dt = O, (1),

(i) if co + c3 > O then [ || 71, (t)P(t) | exp(c1Bn|Su(t)| + c2Qn(t) — c3tTVE)dt = Op(1).

Proof. By lemma we only need to show that the integrals over t € I';; are O,(1). For (i) the
stated result follows from lemma For (ii), it follows from lemmas[A.T|and ]

APPENDIX B. a, = c2¥/n
Lemma B.1. Forj=0,1, [i. 7a(t) exp(c3Sa(t)) (exp (Ru(t)) — 1>¢V(t)dt =0p(1).
Proof. By lemma for b = R, (t)/c, the left hand side is bounded in absolute value by
cJr, | 7tu ()| exp (c3|8u(t)| + |Rn(t) /c| — tTVt/2)dt, which with probability approaching one is
bounded above by ¢ [i. |7, (t)¢/|| exp(c3|Su(t)| — tTVE/4)dt 4oy by lemmal|A.1|for some Y inde-
pendent of c. Letc | 0. ]

Lemma B.2. For j = 0,1, [ m,(t)t exp(c38u(t) + Qu(t))dt = Cymo [t exp(c3Sa(t)) v (t)dt +
0p(1).

Proof. We have

/nn(t)tj exp (38 (t) +Qn(t))dt—CV7'cO/t7 exp (38, (1)) pv (t)dt
= /rf 700 (£)H exp (€2 8u(t) + Qu(t))dt + CV/r 70 (1)t exp (28 (t)) (exp(Rn(t)) — 1)4)V(t)dt

+CV/ (7t (t) — 1)t exp (c28u (1)) pv (t)dt — 1o /r texp(c38,(t) — tTVt/2)dt. (19)

n

The first and last right hand side terms in (I9) are dealt with in lemma[A.7] The second right hand
side term in iso,(1) by lemma Because 77 is continuous at 6y, the third right hand side term

in (M9) is also 0, (1) by lemma[A.3] O
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APPENDIX C. ¢/n = o(ay)
Lemma C.1. Let 4,T be as in lemma[A.2] Let further L, (t) = Su(t) + Qu(t) Then

)t W3 La(t))dt 8
fr 7o (D)t exp (ﬁ:/g n )) LA argmax G(t).
Je 7n(t) exp (B "La(t))dt tel
Proof. Note that IL.2(T, B, 1) is separable where B is the Borel sigma algebra. Since G(t) = G(t) —
t"Vt/2, Ly, G are both in IL2(T, B, #)and L, N by lemmaand the fact that

suprn +tTVt/2| <% sup ||Q;,/(9)—|—V\|/2:op(1), (20)
tel H9*90HS’?/\3/5

by lemma Hence, by the Skorokhod representation theorem (Billingsley} 1999, theorem 6.7),
there exist L}, G* with the same distributions as L,, G, such that for an arbitrary sample path

L = Li(-;w) of L} and corresponding sample path G* = G*(-; w) of G*,

/ IEx(t (1)[2dt = o(1). 1)

Let for arbitrary sets Ty, T, C T, d*(Ty, T) = u(Ty — Tp) + u(To — Ty ). Let further for arbitrary ¢ > 0,
T(s,c) = {t € T : |5(t) — G*| < c}, where G* = max, . G*(t). We first establish that

d*(T(Ly,c), T(G*,c)) =o(1). (22)

Let Ty, (c) = T(L}, c) — T(G*,¢) and Tou(c) = T(G*,c) — T(L}, ). We show that ji(To,(c)) = o(1)
where the same result for Ty, (c) follows similarly. Let for arbitrary c* > 0, T;(c*) = {t € T :
|L:(t) — G*(t)] < c*}. For the remainder of this lemma, define complements relative to T (e.g.
Ti¢(c*) =T — T (c*)). Because p(T;(c*) N Tan(c)) < pu(T;¢(c*)) = o(1) by 1), we only need to
consider (Tj (c*) N Tau(c)).

Note first that T (¢*) N Tau(c) C T;i*(c,c*) = {t € T : ¢ < |L;(t) — G*| < ¢+ ¢*}, such that by
e,

lim lim p(T;*(c,c*)) = Ill’(l)]/l({t el c<|G(t) =G| <c+c'})
c*

*lo n—oo

—u({teT:|G* () -G =c}) =0, (23)

because G* is continuous and nowhere differentiable. So holds.

Finally, note that for j = 0,1 and some finite constant C,

/m I 7e(6) exp{ B (Li(t) — G*) Yt < Cexp(—%¢) [ [l |a(8)]dt = (1),
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since the support of 77, is only increasing at a rate of «;; by assumption |C| Thus,

Jr () texp (B Ly (1)) dt
Jr 7 (t) exp (B Ly (1)) dt

Repeat the arguments to get a lower bound equal to ess inf T(G*, c) + o(1). The stated result then

<esssup T(Lj,c)+0(1) = esssup T(G*,c) +o(1).

follows from the fact that lim, g ess inf T(G*,¢) = lim,|qess sup T(G*,c) = argmax,_ G*(t) for

almost all sample paths by lemma 2.6 of Kim and Pollard| (1990). O

Lemma C.2. For I as defined in lemma and any e >0

=o(1). (24)

lim lim PP

Jee 1870 (8) || exp{Ba"> (Su(t) + Qu(t)) Jdt
F—00 1—00 f 7-[71 exp{ﬁ4/3( (

+ Qu(t)) }dt
Proof. We first work on the numerator in (24). For ¢ > 0, let Z,(¥,c) = {t € T¢ : m,(t) >
0A |Su(t)| < c||t||?}. Fort € Z,(¥,c) we have by assumption |C| that for some fixed ¢* > 0,
SUPy. - (1)>0 |It]| < ¢*¥/n such that using exp (—min(a, b)) < e™ + e~ ?, by lernrna

exp{B,/ (Su(t) + Qu(t))} < exp{B/(cc? —cq)n®} +exp{By/*(c = A~ /4) It}

which for sufficiently small ¢, some ¢** > 0 independent of 4, n, and sufficiently large # is bounded
by 2exp(—B43c**4?). So for any 0 < ¢ < oo, some finite C, and any € > 0 (using P[4] <
P61 N &) + P[&5]),

lim hm]P[exp (cB%/3) / 16704 (t) || exp{ B3 (Su(t) + Qul(t )}dt>€]

"/—»00 n—oo

< lim lim I[Zsznexp{ — ) BY3Y > €] + 11m Jlim ]P{sup|S OIS c} =0.

’)/*)OO n—oo terc

Finally the denominator in 24). If Z};(¢) = {t : 7ty (t) > 0 A Su(t) + Qu(t) > —¢/2} then

lim P [/ 70 (t) exp{ Ba/3 (Su(t) + Qu(t)) }dt > exp(_‘gi/?rc")]

n—oo

> lim P [n/* _exp(—py/3c/2)dt > exp(—,Bf/Bc')]

Zi(c

> lim P [mexp(~c6y//2)(Z;(0) = exp(—Bi/%)| =1 ©

APPENDIX D. &, = o(¢/n)

Lemma D.1. [ 7,(t) exp(Qn(t))dt = moCy + 0(1).
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Proof. We have by lemma[A.7

[ n(Byexp(Qu(t))dt = moCy = [ u(t) exp(Qu(t))at +o(1)
—cy /r 700 (1) (exp (Ra (1)) — 1) g ()t + Cy /r (7en(t) — 70) v (1)t
~ Cymo /r ¢y (t)dt +o(1). (25)

The third right hand side term in vanishes because 7, increases to oo, the first term is 0(1) by
lemma and the second term is o(1) by the continuity of 7 at 6. m|

Lemma D.2. Let pjy = /o /1 [1§i(60 + t/on) Py (t)dt, such that {p;y } is an independent mean zero
array. Then Y| E |\ pin||*+* = 0(1) for 1 defined in assumption

Proof. We have for /* defined in assumption[E}
- 2+ 1—1—r* a% 42 241 ' 5 2+t
Y Bl < 0l (52)7 [P e E|gi (00 + /)Py (Dt = 0(1)0(1)O(1) = 0(1),
i=1
by assumption O
Lemma D.3. Let ¥y = 713 [[ tsTH(t,s)py (t)pv (s)dtds. Then [ 70, (t)tSu(t)py (t)dt 4, N(0, 7n).

Proof. By lemma [ (7 (t) — 710) S, (t)pv (t)dt = 0,(1). Further,

7T / tSu(t)py (t)dt = n 1/ i NO\/@/fgi(f)o +t/a)py (Hdt 5 N(O, ),

i=1
by Lindeberg’s theorem (see e.g. theorem 23.6 of[Davidson|, [1994); the Lindeberg condition is satisfied

by lemma[D.2] O
Lemma D.4. [ |7, ()tS,(t)| (exp(Rn(t)) - 1)4>V(t)dt = 0,(1).

Proof. For fl"fl , use lemma and for fl"n follow the same steps as in the proof of lemma O
Lemma D.5. Forany j=0,1, [ |t|/|7.(t)| exp(|BnSu(t)| + Qu(t))dt = Op(1).

Proof. Define S = sup,cr (|Su(t)| — tTVt/4). For Jre the stated result follows from lemma@ So

we only need to deal with

S I (8) xp(1BaSu (8)] + Qu(D)dt < exp(BuSE) [ I |7a(1)] exp (ButTVE/4+ Qu(1))

Since limy ;o (Qu(t)/¢TVt) = —1/2, it follows that for sufficiently large 1, Qu(t) < —tTV#/4 for all
t € Ty. Because B, = o(1) and S; = Op(1) by lemma[A.3] the stated result follows. i
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Lemma D.6. Forj=0,1, [ 7, (t)t/ {exp(BnSu(t)) — Zizo (BaSu(1))"} exp(Qu(t))dt = O, (,%H)
Proof. Apply lemmawith ¢ = B and b = §,(t), followed by lemma O
Lemma D.7. 4;, — %, 4, N(0, C%,”//N).

Proof. Use t = u,, (0 — 6p) to obtain

Ny — By = /31,1 [ et {exp(BuBa(t)) — 1} exp(Qu(t))d =

/nn(t)t§n(t) exp (Qu(t))dt + ﬁln / nn(t)t<exp(ﬁn§n(t)) —1- /Sngn(t)) exp(Qu(t))dt. (26)

The first right hand side term in (26) converges in distribution to the stated normal by lemmas [D.3

and[D.4] The last term in 26) is O, (Bx) = 0,(1) by lemma|D.6} |
Lemma D.8. %, = moCy +0p(1).

Proof. Use t = u,, (0 — 6p) to obtain

Dy — /nn(t) exp (BuSu(t) + Qu(t))dt
= [t exp(Qu(®)at + [ mu(t) (exp(BuSn(t) —1) exp(Qu(t)dt. @7)

The first right hand side term in 27) is 719Cy + 0 (1) by lemma The last term in @7) is 0,(1) by
lemma O

APPENDIX E. BIAS
E.1. Bias Expansion. In this subsection, the assumptions of theorem f|are used.
Lemma E.1. For some finite Cg, sup;r |Rn(t)| < Crys/on = o(1).

Proof. Because Q is three times continuously differentiable at 6y,

sup |R,(t)| < 3 sup  [|Q"(0) + V||/2 < Crvy/atn,
tel’y 166011 <7vn/an

which is 0(1) by the definition of 7.

Lemma E.2.
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Proof. The length of the left hand side is by lemma|A.6|for s}, = sup; . [Rx(t)| equal to

) Ry (t 14
5 mr g ] < 55+ exptsi) [ im0ty 161 = 0((55)),
p=q+17"n ‘

Apply lemmal[E.]} 0

Let .#, be the collection of g-vectors m of nonnegative integers for which 22:1 my = p. Let further

Mg = ={me My, : ZZ 1 tmy =1}, let Dgs(t) be the 6—th term in a Taylor expansion of Q(6 + t)

about Q(6y) and let D;(t) be likewise for 71, e.g. Do (t) = t7Q"(6p)t/2. Finally, let Dy, (t) be

) times the remainder term in a 5—th order Taylor expansion of Q(6y + t/«a,) about Q(6) and let
D*

* 5n (1) be likewise for 7.

Lemma E.3. For any vectora € 7, (T0_, a)" /p! = Le. g TT)_, ay /myl.
Proof. This is a restatement of the multinomial theorem. O

E.2. Bias Correction. In this section the assumptions of theorem[ﬂ are used; r*, p, are as defined
in assumption [, take 77, 7t to equal 71}, 7y, let /g = 7 (6p), and 7, (t) = A (6 + t/ay). Let further

v(0) = vec{(—Q"(6)) } and 9(0) = Vec{(—Q”(Q))_l}.
Lemma EA4. (i) 7o = 7o + 0p (e, ) and (i) SUP g_g,[|<pn |17 (0) = 7T (O) || = 0p(a, w, ).

Proof. Part (i) is implied by assumptions|lland @] (det(V) > 0). For (ii), note that
'(0) = —m(0)Q"(0)v(8)/2, (28)
in a neighborhood of 8. Hence in such a neighborhood,
2(A'(8) — 7' (8)) = — (Ao — 710) Q" (8)9(6) — o { Q" (6)9(8) — Q"' (6)(6) }.
Apply part (i) and assumption|l} O

LemmaE5. by = [ (toD3(t) 4+ D () tpy (t)dt =
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Proof. Let Vi’ denote the (j, £) element of V! and let Hpst = agpgsgéQ(Bo). Then the j-th element of

b;‘l is equal to
o d
ra ) mz/}p%w%¢v df+'zzaw (6o) /}ft¢v
psAt=1

d d
( Y. s (VPEVIE L VPV vyt -3 Y WVPSV!’) 0,
pst=1 pst=1

where the first equality follows from (28). O

Lemma E.6. [ (ay + Dos(t)) tu(t)tdy (£)dt = 0p(a;,”).

Proof. The left hand side in the lemma statement is by the mean value theorem for some t* between

zero and t equal to

/ttT 7o () v (¢ dt+7ro/DQ3 tpy (t)dt 4 a,, /ttT ")Dos(t)¢v (t)dt

which by lemma [E.5]is equal to

/ttT — 710) Py (£)dt + (Fto — o /DQ3 )ty (t)dt
+a; /ttT(fr,’,(t*) - n{))DQ3(t)4>v(t)dt+uc;1/Dnl(t)Dgs(t)fva(f)dt

whose first three terms are oy (a,; ") by lemma E dominated convergence, and assumptlonl and

whose last term is zero because of the symmetry of the normal distribution. O
APPENDIX F. UNIFORM INFERENCE
The results in appendix [] presume that the assumptions of theorem 8|are satisfied.

LemmaF1. G 2 Gin L2°( N, D, . ..).
Proof. For any fixed and distinct ¢4, ..., tj, we can write

G(h)

A1/2
=0 (tl,...,t]'>17,
G(t)
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with g ~ N(0, I;) and Q(ty,..., ti) € € R>J with (¢, p)-element H(t,t,). Let Q be as O with H

replaced by H. Since H is a consistent estimator of H,
OV (1, )= QY2 (. )+ 0,(1) ~ N(0,Q(f, .., ) +0p(1),

which is the joint distribution of G(t1), ..., G(t;). The stated result then follows from the fact that G
is tight. O

Lemma E2. Forany ¢ = [c1,¢3]" with 0 < ¢1,¢p < o0, Let é(t;c) =c1G(t) — cpt™Vt/2and G(t;c) =
c1G(t) — c2t"Vt/2. Then é(';c) LG(50)inL>(A, R,...).

Proof. Follows from lemma F.1|combined with the consistency of V. O

Lemma E3. For c as in lemma and any vector-valued function ¢ for which for some cy < oo,
sup [$(B)/([H% +1) < oo,

/1/J(t) exp(c1G(t) — catTVt/2)dt 4, /w(t) exp(c1G(t) — cot'VE/2)dt

Proof. By lemma [F.2|and the Skorokhod representation theorem (Billingsley), (1999, theorem 6.7),
there exist é*,@*, such that é*,@* have the same properties as é,@ and such that for all w:
é*(-;w) — G**(+;w). Since ||p(t)||exp(c1G(t) — catTVt/2) is a.s. integrable by the assumptions
on H, , the stated result then follows from the dominated convergence theorem (Billingsley, (1995,

theorem 16.4). ]
Lemma F4. If1 = o(B,) then

/texp(ﬁ;ﬁ/e‘(f}(t) — tTVt/2))dt/ /exp(ﬁ%/a((}(t) —tTVt/2))dt 4, argmax G(t).
teRd
Proof. Let §;(t) = tlexp(By/>(G(t) — t7Vt/2)) and y;(t) = texp(Bi/>(G(t) — tTVt/2)). Then
$o, P1, Yo, Y1 € L(RY, B, 1) and (o, $1) — (Yo, ¥1). Repeat the arguments of lemmafollowing
(20). O

Lemma E5. If B, = o(1) then

1, j=0,

[T exp(B/76(t/8.) 0 (1)t = 0,(1) + )
g VB [ 6t/ B)gp (D, = 1.
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Proof. We show the stated result for j = 1; the case j = 0 is similar. By lemmal[A.6 we have

which has the same distribution as 8,C;;' [ [|t|| exp(|G(t)| — tTVt/2)dt = Op(Bn) = 0,(1). O

Bl [ rep (82680 0o 0t~ Bu [ 160/ )00 )1
< BaCyt [ It exp(v/BalG(t/ )| — T0/2)d,

Lemma E6. If B, = o(1) then

\/E/t(;(t/ﬁn)%(t)dt 4N, 7). (29)

Proof. The left hand side in has the same distribution as [ tG(t)¢y (t)dt, which by lemma

the assumption that V = V + 0p(1), and the conditions on A, converges in distribution to

/ 1G (1) Py (1)dt, (30)

Because S, = G, is also the limit of [ tS,(t)¢y (t)dt, which lemma established to have a
limiting N (0, ¥') distribution. O

APPENDIX G. RESULTS SPECIFIC TO THE MAXIMUM SCORE CASE
G.1. V,H,7.
Lemma G.1. V = —2E[z;z] pa(2] 60, zi) f (2] 60| zi)].

Proof. Let dy denote a partial derivative with respect to 6. In view of the definition of V, consider

/z" G(Zp(a, z) — 1) f(alz:)da

—00

aeerlEgi(G) = aegT]E[(Zp(ai, Zi) — 1)[(0!1' S ZIG)] = 899T]E

=091 E [z (2p(2]0,2i) — 1) f(2]60]zi)]
= E[ziz] {2pa(2]6,2i) f(2]0]z:) + (2p(2]60, i) — 1) f'(2]6]zi) }],
which at 6 equals 2IE z;z] pa(z] 60, z:) f (2] 60|2i) | = —V. O

Lemma G.2. If u; is the error term in the latent variable equation of Manski|(1975) and Manski's conditional

median assumption is satisfied, then V = 2IE[z;z] f,,412(0, 2] 602:)].

Proof. Note first that p(a,z) = 1 — F,,,(a — z"6p|a, z), whose partial derivative with respect to a for
a =200,z = zis f,,:(0|276p, z) since F,|,,(0[a,z) = 1/2 for all values of 4,z by the conditional

median assumption. O



36
Lemma G.3. H(t,s) = E[|M(z]t,z]s,0)|f(z]60|zi)].
Proof. Let

z] 6g+min(z] 2] s)/a
H(t,s) = lim E (x/
z

K—00

.
i 0

by the dominated convergence theorem. Thus, noting that (2y; — 1)?> = 1, we have

H(t,s) = #(t,s) — #(t,0) — 7#(0,5) + #(0,0)

f(a|zi)da| = E[min(z]t,z]s)f(z]6o|zi)].

= E[{min(z[t, z]s) — min(z]t,0) — min(z]s,0)} f(z]60|zi)] = E[|M(z]t,z]s,0)|f(z]60|zi)].

Lemma G.4. Ifforsomej=1,...,d,P[z; = 0] = 0, then holds.

O

Proof. We first establish the following five results for a generic variance matrix £ € R¢*4, where Xy

denotes the 2 x 2 submatrix of X containing oy, 0y;, 0j, 0 with oy; the (¢, j) element of X.

/t /iji’z;jl(shsj)dsjdsl = ojp(t1/01)/ o1, (31)
1
[ sisi/ondsifor = gt /o), )
1
fff[ tgflsjq)z;jl (S1,S]')(P2171(t1, tg)dslds]‘dtldtg = U’l]'O'lg/40’1\/E, (33)
. /
J:r th]' min(tl,sl)gbzfl (S)(szl (t)dsdt = 0’1]'0'15 /20'1 \/E, (34)
fj ts" min(ty, 1)@y 1(s) Py 1 (t)dsdt = Leye]%/24/ rwe] Zey, (35)
where e; is the first unit vector. The left hand side in (31) is
ay [ a o[ 71
— s1¢(s1/01)dsy = —— 51)dsy = —¢(t1/ ).
=3 1p(s1/01)dsy = = tl/Ul(P(l) 1= ¢h/on)
Equality is similar, but easier to establish, and the left hand side in is by equal to
o1 _ %1 50 _ % 50
U—lﬂ Eetip(t1/ 01y 1 (b t)dtedty = = /th; (h/01)dt = T /thb (h/V2)dh
01
B 4(71\/E.

Equality then follows by applying twice and by repeatedly using (34).
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Now suppose without loss of generality that ; = 1 and denote the remaining elements by Z;. Let

further

zh 2]
s ] . Vi=(AD)TWATY,  fi = f(2]60]zi).

Then by substitution of f = A;t and § = A;s,

¥ = [[ tsTH(t,5)pv (v (s)dtds = E [fi ([ tsTIm(e] t,z}s,o)\(;;v(t)m(s)dtds}
= E[fia7" [[ 5T IM(F,51,0)|pv, (t)g (s)das(A]) ']

—1y,=1, Ty—17,T)\"1
1 (T . e _ N 1 1 A7V ee] Vi (A])
:]E{fiAi f 15T min(y, 51) v, (F) v, (§)dFds (A]) }: Zﬁ]E [,- LA - _’1 L
eV el
_ L g | = F(2160]zi) | V1
=5 = Y i i ’
2ym z]V-lz; l

where the penultimate inequality follows from and the last from the fact that Ai_IVi_1 =V1A]

and that AJe; = z;. O

G.2. Weak Convergence. In this section, we show that assumption@] is satisfied in the maximum
score case. In view of equation (T), partis satisfied. Let .# (/) be the Vapnik-Cernovenkis (VC)

index of a function class 7. Let 7 C R be an arbitrary compact set.

Lemma G.5. Let 0,(¢,t) = I(z7(6p + /&) > a) and F, = {0n(-;t) e and every n, I (F,) <
d+3.

Proof. Since .%, is a collection of indicator functions, its VC index is equal to the VC index of the
collection of sets {(z,a) : z" (6 + t/&,) > a} with t ranging over .7. For every #, this collection is a
subcollection of the sets {(z,a) : z't + as > 0} with (t,s) ranging over R¢*!. The VC index of the
latter collection of sets is equal to d + 3 by Kosorok! (2008, lemma 9.12). O

Lemma G.6. Foralln, 9(%,) <2d+5.

Proof. Note that for every element v € %, there is an element 0, € Fy such that v, (&) = /&, (2y —
1)(94(¢) — I(z"69 > a)). Therefore, .# (%, ) is bounded by 2.7 (%,) — 1 by [Kosorok (2008, lemma
9.9). The conclusion then follows from lemma O

Let t,(z) = arginf,_,z"(6g + t/&,) and s,(z) = argsup,. 5z (6p + t/&;) and note that F,
defined in assumptionis Fu(¢) = Vanl{zT (60 + tn(2) /&) < a < 2T (60 + 5n(z) /&) }.
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Lemma G.7. EF% = O(1).

Proof. By the law of iterated expectations,

EF2 = Ecn]E[]P (2] (60 + tn(zi) /@n) < a;i < z] (00 + sn(zi)/&n) ‘z,ﬂ
< E[sup f<(slz0) il 1) + (20
The stated result then follows from t,(z;),sx(2i) € 7 and E[sup; f,.(s|zi) | zil|] < co. O
Lemma G.8. Foralle > 0, E[F%1(F,; > ey/n)] = o(1).
Proof. Follows from n/&, — . O
Lemma G.9. For every € | 0, sup;_y ., E [, (gi(60 +t/&n) — gi(60 + S/Ecn))z] =o0(1).

Proof. Follows from

E[&n (gi(GO + t/&n) - gi(GO + 5/5471))2] < &,E []P[z;'r(()O + t/&n) <a; < z;'r(gO + S/Eén)|zi]]
+ &, [P[=] (60 + /&) < a; < 2] (60 + /i) ] < 2E[sup fura(slza)l|zil] It =5 ©
S
Lemma G.10. S, % G in LA, D, ...), where G is a Gaussian process with covariance kernel H such
that H(t,t) = O(||t]]) as ||t]| — oo.

Proof. Recall that
fnE [gi(00 +t/8n)gi(00 +5/8n)| — H(s,t) = E [f(z]6|a;)|M(2{t,z]s,0)]] .

By lemmas and theorem showing that part [v] holds will complete the proof. Note
however that by lemma each .7, is a VC class of which the VC index is bounded by 2d + 5.
Therefore, for0 < e < 1,

N (e Fl 02 Fu L2(2)) < CE2H)

for some constant C that only depends on d; see e.g.|van der Vaart and Wellner| (1996, theorem 2.6.7).

Hence, part[v]of assumption|Glis satisfied, and the conclusion follows. O

APPENDIX H. PROOFS OF THEOREMS

Please note that the proofs use some additional notation that was introduced in appendix

Proof of Theorem[l} See lemma ]
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Proof of Theorem[2] See lemma O
Proof of Theorem 3} First (i). Note that by substitution of t = (6 — 6y) we get

i ()0 — ) exp{ad(54(0) + Q(6) }0

w0 Naw [7(0) exp{ad(S4(0) +Q(6)) Jdo

T a1 xp 51 + Qu(D)dt 1 [ exp(Sa() v (D
&3 [ a(t)exp(38u(t) + Qu(1))dt & [exp(c3Su(t)) ¢y (H)dt

by lemma Multiply both sides by ¢,, then apply lemma and the continuous mapping

+0p(1),

theorem.

Now (ii). By substitution of t = ¢/n(6 — 6y) we get

s=a [ (t) (Htexp{ B3 (Su(t) + Qu(t)) Ydt _N
Vin(®—60) = [ 7 (t) exp{ﬁ4/3(§ (t) + Qu(t)) }dt D’

Now, for I' = {t : [[t| < 9} for finite positive 7. Let further Ni = [ 7w, (t)texp{-- - }dt,

Nie = [pe ma(t)texp{---}dt, Dy = [z m,(t)exp{---}dt, Dgc = [rc ma(t) exp{--- }dt. Simple

manipulations show that

N2

By lemma both Dg. /D and Ng. /ID are 0, (1) and by lemma 1} Ny /Dy 4, argmax,r G(t) for
any 4 > 0. Let ¥ — oo. O

Proof of Theorem[d Combine lemmas[D.7/and O

Proof of Theorem[5| For .#,, defined as in appendix [E| By lemmas and the difference

between 4, and

= SV f ;' / 7 (E)E(Ru ()P gy (1), (36)

is o(a, B, 1). We employ the Taylor expansions

Ra(t) = i DQ,&;z(t) N DE‘gA;(t)I rn(t) = i Daelt) |, Dt ).

=1 % &y (=0

(37)

ah ah
Note that sup;cr, .\ 1o} (ID{ (t )/ I1EI* + [Dzgu(B)1/][H]7) = o(1) by the continuity of the A-th
derivative of Q and the g-th derivative of 7 at 6, and the fact that 7, = o(a,,). Hence, by lemmas

[A.7|and[A.9]it follows that any expressions in an expansion of (36) using (87) involving the remainder

terms in the Taylor expansions of are o(a, B 1).
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Omitting the remainder terms in the definition of %;; yields

e () (2

6
=1 “n
Using lemma [E.3] we obtain

ar = i /(i Dnz(f)> s

‘B” p=0 /=0 “ﬁ

() o

q_ D™
Z Z Z e+2 s /Dnﬂ(t) (bl—[l Q’;;!Z(t))WV(t)dt

- 1 &by -
22 0 = 5 Y (e ),

”é 0r= =0 %n

where

q q_ pMs
bqr[ = Z Z /an(t)< Q;:;!Z(t)>t¢V(t)dt

p=0 A5y =1
and b;‘T =Cy Y o bgr,r—r Finally, b;‘T = 0 for even—valued T because bqrg = 0 whenever r and ¢ add
up to an even number. Indeed, then there is at least one f; taken to an odd power in (H), whose

integral with respect to the normal density equals zero. O

Proof of Theorem[] Given theorems Iand I we only need to show that (i) b*O = 0 and (ii) b* o=
Cy [(toDg3(t) + D1 (1)) tpy (t)dt. Both results follow from the definition of by in the proof of

theorem[5 m]

Proof of Theorem[j Let Ay, @]n,,%’]n,% be defined as .14, @,,,%’n,,%’ with & = 7y and 7, =
7t (0o + t/ay) replacing 7, 71,. By lemmawe have A}, — By 4, N(O, C%”VN), PDin = moCy +
0p(1), following the same steps as in lemmas and It therefore suffices to consider %y,,.
The first few lines of the proof of theoremestablish that the difference between %, and %}, is
o(a,, "B, 1). The argument there and those in lemmas and used therein do not depend on 7
being nonrandom, so %j, — %J, = op (e 1By 1)

Expanding R, (t) and ignoring the remainder term like in the proof of theorem 5, we get

af

%}‘n— Z/ ( DQM()>pt¢v(t)dt+op(a;qﬁ;1). (38)
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Part (i) of the theorem then follows by applying lemma to the first right hand side term in (38).
For (ii) the first right hand side term in equals

aﬁn/m (Dgs(t) + Do3(t)Daa(t) /2 + D3y (1) /6) ty (1)t

nﬁn /”” (Dga(t) + D (1))t (t)dt.  (39)

By lemma [E.4]the first term in (39) is

Cy o
“%ﬂn

Using the same arguments as in the proof of theorem §|about the remainder terms in an expansion

| (Das(t) + Doa(t)Dgs(t) /124 D (1) /6) ey ()dt + 0y (a8, ") = Op (0B 1)- (40)

of the prior, the second term in (39) is

Cymo
aZBn

] (e + Das() g ()it + St [ (Dou(t) + Dia() gy (1e'at ' (@)

nPn

+0p(ay,°B).  (41)

The first term in is zero because the normal distribution is even. The second term in is
O(a;, 3B, 1), so part (ii) of the theorem is satisfied with %) equal to the sum of the first term in (40)
and the second term in (&1). O

Proof of Theorem First part (ii). If ¢, > 1, then x, = /n and by lemma
Y, = /texp(ci@(t) —catTVt/2)dt/ /exp(cﬁ@(t) — cytTVt/2)dt

has the limiting distribution given in . For ¢, < 1, we have likewise x, = </n/c, and

ftexp( c/2G(t) — StTVE/2)dt 1 [ texp(ca/>G(t/c3)) v (t)dt
S A - 42)
fexp( 22G(t) — c§ETVE/2)dt i [exp(cd/*G(t/c3))py (t)dt

by substitution of f = c3t and replacing f with t. The right hand side in has the same distribution
as the limit distribution in (6) since ¢a/?G(-/c3) has the same properties as c3G(-).

Part (iii) is established in lemma

Finally, part (i). By substitution of f = B,t and replacing by t we obtain

1 [ texp(By?G(t/Bn)) Py (t)dt
P [ exp (B *G(t/p)) oy (D)t
Apply lemmalF5|followed by lemma O

¥, =
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APPENDIX I. COMPUTATION

I.1. Maximum Score. We now describe the algorithm used to compute our estimates for the maxi-
mum score case. A computer program written in C is available upon request.

Letf_j, z;—j be respectively 6, z; without its j~th element. Let B;; = B;;(0_;) = (a; — le’_]-G_j) /zij
if z;; # 0 and be arbitrarily defined if z;; = 0. Let further S,;(6;) = i (2y; — 1) (I(zi; > 0)I(6; >
By) + 1(zi; < 0)1(8; < Bij))/ /. Let A(8:10_) = [ 7;(8:10_;) exp(Suj (6))) 8.

(1) Compute and renormalize probit estimates.

(2) Setj=1.

(3) Compute B;; for all i for which z;; # 0 and sort all #n* of them in ascending order, i.e.
Bij < Byj < ... < By,

(4) Compute S,;(—c0).

(5) Note that for all 6; < Byj, .%,j(0;) = exp(Suj(—00))IL;(6;|0_;), where IT;(6;|6_;) is the

integrated conditional prior.

(6) Forall 9]' S (Blj/ le'], fn]'(gj') = fnj(Blj) + eXp{Snj((Blj + sz)/Z) } (Hj(9j|6—j) - Hj(Bljw—j)) .

(7) Repeat this process until .#,;(6;) is determined for all values of 6;.
(8) Set fn"}(Qj) = Sj(0;)/ Fuj(c0), which is a distribution function.
(9) Draw a random number 7 from a uniform distribution.

(10) Compute i* = max{i: 7% (Bjj) <r}.

(11) Set 9] = 9](1‘) =111 (H(Bi*j) + fn]-(oo)r + jnj(Bij)wfj)-

(12) Increase j. If j > d set j = 1. Go to step 3]

(13) Repeat for a large number of times to burn in.

(14) Then start using them as actual draws.

1.2. Inference. We now describe how one can draw J] random numbers with the same distribution
as (I7). Suppose that consistent estimates V, H are available, where H is moreover a positive semi-
definite covariance kernele] One can then draw random numbers ty, ..., t7+ from the multivariate

normal (¢ ﬁnzV) and define
é\j _ ZZZ}F tsexp(Bm st)
Y1 exp(Bu Gjs)
where Gji, ..., Gjr+ are drawn independently across j and have for all given j = 1,...,J a joint

, (43)

normal distribution with Cov[G]-s, G;’s*] =H (ts, tsx), for all s, s*. In the limit (n and T*), each f i has

2l practice one only needs to ensure that the T* x T* matrix with (i, j)-element H(t;, ;) is positive semidefinite.
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the same distribution as ¥,, defined in (17). Note that the t; draws are made only once. The draws

(A Tyenny Z j can then be used to construct confidence intervals.

L1.3. Derivatives of Q. For the maximum score case, Q(6) = E[(2y; —1)(I(a; < z]0) — I(a; <

ziTGo))] . If derivatives of Q must be estimated, we recommend using the desired derivative of

T
z;0 —a;

Q'(6) = i’z<l~j)(2yi—1)zi,

where k is a kernel and b a bandwidth.
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